Tetrafluorophosphate Anion

Karl O. Christe,*, ${ }^{*, 2}$ David A. Dixon, ${ }^{3}$ Gary J. Schrobilgen, ${ }^{*, 4}$ and William W. Wilson ${ }^{1}$
Contribution from Hughes STX, Propulsion Directorate, Phillips Laboratory, Edwards Air Force Base, California 93524, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, Pacific Northwest National Laboratory, Richland, Washington 99352, and Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4MI, Canada

Received September 30, 1996^{\otimes}

Abstract

The elusive POF_{4}^{-}anion has been characterized for the first time. It is formed from $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ and POF_{3} in CHF_{3} solution at $-140{ }^{\circ} \mathrm{C}$ and can be observed at this temperature by ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. Between -140 and $-100{ }^{\circ} \mathrm{C}$ it reacts with POF_{3} forming the $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}{ }^{-}$anion, which, at higher temperatures, reacts with F^{-}anions to give $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$. This reaction sequence provides a low activation energy barrier pathway for the highly exothermic dismutation of pseudo-trigonal-bipyramidal POF_{4}^{-}to tetrahedral $\mathrm{PO}_{2} \mathrm{~F}_{2}^{-}$and octahedral $\mathrm{PF}_{6}{ }^{-}$and explains the previous failures to isolate POF_{4}^{-}salts. In addition to $\mathrm{POF}_{4}^{-}, \mathrm{OF}_{2} \mathrm{POPF}_{5}^{-}$, and $\mathrm{PO}_{2} \mathrm{~F}_{2}^{-}$, the protonated form of $\mathrm{OF}_{2} \mathrm{POPF}_{5}^{-}$, i.e., $\mathrm{HOF}_{2} \mathrm{POPF}_{5}$, was also identified as a byproduct by NMR spectroscopy. The structure, vibrational spectra, force field, NMR parameters, and dismutation energy of $\mathrm{POF}_{4}{ }^{-}$were calculated by $a b$ initio electronic structure methods using, where required, the closely related and well-known $\mathrm{PF}_{4}{ }^{-}$ion and POF_{3}, $\mathrm{PF}_{3}, \mathrm{SOF}_{4}$, and SF_{4} molecules for the determination of scaling factors. Although the structures and dismutation energies of isoelectronic POF_{4}^{-}and SOF_{4} are very similar, their dismutation behavior is strikingly different. While $\mathrm{POF}_{4}{ }^{-}$dismutates rapidly at low temperatures, SOF_{4} is kinetically stable toward dismutation to $\mathrm{SO}_{2} \mathrm{~F}_{2}$ and SF_{6}. This fact is attributed to the lack of a low activation energy barrier pathway for SOF_{4}. Furthermore, the dismutation energy calculations for $\mathrm{POF}_{4}^{-}, \mathrm{SOF}_{4}$, and ClOF_{3} revealed very large errors in the previously published thermodynamic data for the heats of formations of $\mathrm{SO}_{2} \mathrm{~F}_{2}$ and SOF_{4} and the dismutation reaction energy of $\mathrm{POF}_{4}{ }^{-}$. Energy barriers and the $C_{4 v}$ transition states for the Berry-style pseudorotational exchange of equatorial and axial fluorines in POF_{4}^{-}, $\mathrm{SOF}_{4}, \mathrm{PF}_{4}^{-}$, and SF_{4} were also calculated and can account for the observation that on the NMR time scale the exchange in PF_{4}^{-}and SF_{4} can be frozen out at about $-40^{\circ} \mathrm{C}$, while in POF_{4}^{-}and SOF_{4} it is still rapid at -140 and $-150{ }^{\circ} \mathrm{C}$, respectively.

Introduction

On the basis of ion cyclotron resonance measurements ${ }^{5,6}$ and ab initio calculations, ${ }^{7}$ the F^{-}affinity of POF_{3} exceeds that of PF_{3} by about 8 and $16 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. Our recent synthesis of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{PF}_{4}$ from $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ and PF_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ solution ${ }^{8}$ and its surprisingly high thermal stability up to 150 ${ }^{\circ} \mathrm{C}$ strongly suggested that the closely related, but yet unknown, $\mathrm{POF}_{4}{ }^{-}$anion could also be isolated. This suggestion was also supported by the fact that the corresponding isoelectronic sulfur compounds, SF_{4} and SOF_{4}, are both well-known and stable. ${ }^{9}$ Consequently, one would predict that POF_{3} should readily add a fluoride ion to form a pseudo-trigonal-bipyramidal $\mathrm{POF}_{4}{ }^{-}$ anion with a $C_{2 v}$ structure similar to that of $\mathrm{SOF}_{4} .^{10,11}$

Previous attempts to prepare CsPOF_{4} from CsF and POF_{3} either without solvent at $130^{\circ} \mathrm{C}$ or in $\mathrm{CH}_{3} \mathrm{CN}$ at $50^{\circ} \mathrm{C}$ resulted
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, April 15, 1997.
(1) Hughes STX.
(2) University of Southern California.
(3) Pacific Northwest Laboratories.
(4) McMaster University.
(5) Larson, J. W.; McMahon, T. B. J. Am. Chem. Soc. 1983, 105, 2944.
(6) Larson, J. W.; McMahon, T. B. Inorg. Chem. 1987, 26, 4018.
(7) Dixon, D. A.; Christe, K. O. Unpublished results.
(8) Christe, K. O.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Wilson, W. W. J. Am. Chem. Soc. 1994, 116, 2850.
(9) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, 1986.
only in equimolar mixtures of $\mathrm{CsPO}_{2} \mathrm{~F}_{2}$ and $\mathrm{CsPF}_{6} .{ }^{12}$

$$
\begin{equation*}
2 \mathrm{CsF}+2 \mathrm{POF}_{3} \rightarrow \mathrm{CsPO}_{2} \mathrm{~F}_{2}+\mathrm{CsPF}_{6} \tag{2}
\end{equation*}
$$

In a recent ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR study of the hydrolysis of AgPF_{6} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, signals $\left({ }^{19} \mathrm{~F}\right.$: doublet at $-85.8,{ }^{1} J_{\mathrm{P}-\mathrm{F}}=1016 \mathrm{~Hz}$; ${ }^{31} \mathrm{P}$: triplet at $-2.4,-10.9,-19.2$ with intensities characteristic of a quintet, rather than a triplet) were observed which, as will be obvious from our results, were erroneously attributed to $\mathrm{POF}_{4}{ }^{-} .{ }^{13}$ The free gaseous $\mathrm{POF}_{4}{ }^{-}$ion has been observed as a stable intermediate in an ion cyclotron resonance (ICR) study ${ }^{6}$ in which PF_{5} was reacted with tert-butoxide to give $\mathrm{POF}_{4}{ }^{-}$ (reaction 3),

$$
\begin{equation*}
t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{-}+\mathrm{PF}_{5} \rightarrow \mathrm{POF}_{4}^{-}+t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~F} \tag{3}
\end{equation*}
$$

which then transferred F^{-}to PF_{5} to give $\mathrm{PF}_{6}{ }^{-}$and POF_{3} (reaction 4).

$$
\begin{equation*}
\mathrm{POF}_{4}^{-}+\mathrm{PF}_{5} \rightarrow \mathrm{POF}_{3}+\mathrm{PF}_{6}^{-} \tag{4}
\end{equation*}
$$

The POF_{3} can also react with the tert-butoxide anion to give $\mathrm{PO}_{2} \mathrm{~F}_{2}^{-}$(reaction 5).

[^0]\[

$$
\begin{equation*}
\mathrm{POF}_{3}+t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{-} \rightarrow \mathrm{PO}_{2} \mathrm{~F}_{2}^{-}+t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~F} \tag{5}
\end{equation*}
$$

\]

Although the final products of these ion cyclotron resonance reactions, $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$, were the same as those in the dismutation reaction 2 , their formation involved the tert-butoxide ion and not two POF_{4}^{-}anions, which would be unlikely to react with each other in the gas phase. Based on the relative F^{-}ion affinities, determined from the ICR reactions, the dismutation reaction 6

$$
\begin{equation*}
2 \mathrm{POF}_{4}^{-} \rightarrow \mathrm{PO}_{2} \mathrm{~F}_{2}^{-}+\mathrm{PF}_{6}^{-} \tag{6}
\end{equation*}
$$

was estimated ${ }^{6}$ to be exothermic by $76 \mathrm{kcal} \mathrm{mol}^{-1}$, with $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$ and $\mathrm{PF}_{6}{ }^{-}$being the thermodynamically favored products. This seemed in sharp contrast to isoelectronic SOF_{4} for which, based on the published thermodynamic values for $\mathrm{SOF}_{4},{ }^{14,15} \mathrm{SO}_{2} \mathrm{~F}_{2},{ }^{16-18}$ and $\mathrm{SF}_{6},{ }^{16}$ the analogous dismutation reaction 7

$$
\begin{equation*}
2 \mathrm{SOF}_{4} \rightarrow \mathrm{SO}_{2} \mathrm{~F}_{2}+\mathrm{SF}_{6} \tag{7}
\end{equation*}
$$

would be about thermally neutral. This huge energy difference for two isoelectronic systems was puzzling and needed either verification or rationalization.

In view of these challenges, it was interesting to attempt the synthesis and characterization of a POF_{4}^{-}salt, to elucidate the mechanism and energy of its dismutation reaction 6, and to study its fluxionality and axial and equatorial fluorine ligand exchange. ${ }^{8}$

Experimental Section

Apparatus and Materials. Volatile materials were handled on either a flamed-out Pyrex glass vacuum line equipped with Kontes glassTeflon valves and a Heise pressure gauge or a nickel/stainless steel vacuum line equipped with MKS type 122A pressure transducers ($0-$ 1000 Torr, $\pm 0.5 \%$ of reading) having fluorine passivated Inconel as the wetted surface and a model PDR-5B five-channel digital readout and power supply. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glovebox. The infrared and Raman spectrometers have previously been described. ${ }^{19}$ Literature methods were used for the syntheses of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}^{20}$ and $\mathrm{POF}_{3}^{21,22}$ and the drying of $\mathrm{CH}_{3} \mathrm{CN} .{ }^{23,24} \mathrm{CHF}_{3}$ (The Matheson Co. or Canadian Liquid Air) and SO_{2} (The Matheson Co.) were purified by fractional condensation prior to their use.

Nuclear Magnetic Resonance Spectroscopy. The ${ }^{19}$ F (282.409 $\mathrm{MHz})$ and ${ }^{31} \mathrm{P}(121.497 \mathrm{MHz})$ NMR spectra were recorded unlocked (field drift $<0.1 \mathrm{~Hz} \mathrm{~h}{ }^{-1}$) without spinning on a Bruker AM 300 spectrometer equipped with a 7.0463 T cryomagnet and a $5-\mathrm{mm}{ }^{1} \mathrm{H} /$ ${ }^{13} \mathrm{C} /{ }^{19} \mathrm{~F}{ }^{\beta 1} \mathrm{P}$ combination probe. Free induction decays were typically accumulated in $64 \mathrm{~K}\left({ }^{19} \mathrm{~F}\right)$ and $32 \mathrm{~K}\left({ }^{31} \mathrm{P}\right)$ memories. In the case of ${ }^{31} \mathrm{P}$ spectra, a Gaussian line shape function was applied for resolution

[^1]enhancement prior to zero filling the free induction decay into a 128 K memory. Spectral width settings of $50\left({ }^{19} \mathrm{~F}\right)$ and $30 \mathrm{kHz}\left({ }^{31} \mathrm{P}\right)$ were employed, yielding data point resolutions of $1.53\left({ }^{19} \mathrm{~F}\right)$ and 1.80 Hz or 0.45 Hz for resolution enhanced spectra $\left({ }^{31} \mathrm{P}\right)$ and acquisition times of $0.328\left({ }^{19} \mathrm{~F}\right)$ and $0.557 \mathrm{~s}\left({ }^{31} \mathrm{P}\right)$, respectively. Relaxation delays were not applied. Typically, 10000 transients were accumulated. Pulse widths were $1.0\left({ }^{19} \mathrm{~F}\right)$ and $3.0 \mu \mathrm{~s}\left({ }^{31} \mathrm{P}\right)$. Line broadening parameters used in the exponential multiplication of the free induction decays were $0.5\left({ }^{19} \mathrm{~F}\right)$ and -4.0 Hz with a Gaussian block parameter of 0.5 for Gaussian multiplication $\left({ }^{31} \mathrm{P}\right)$. Temperatures were measured with a copper-constantan thermocouple inserted directly into the probe, are considered accurate to $\pm 1^{\circ} \mathrm{C}$, and were constant to less than $\pm 0.1^{\circ} \mathrm{C}$. The spectra were referenced to neat external samples of $\mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}\right)$ and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ at ambient temperature, and the IUPAC sign convention for chemical shifts was used.

Samples for NMR spectroscopy were prepared in medium-wall Pyrex glass NMR tubes (Wilmad). The tubes were fused to 3-cm lengths of $0.25-\mathrm{in}$. o.d. glass tubing and joined to J. Young glass/Teflon valves through $0.25-\mathrm{in} .316$ stainless steel Cajon Ultra Torr unions and dried overnight by pumping on a glass vacuum line. Weighed amounts of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ were loaded into the NMR tubes in the drybox and then transferred to a calibrated metal vacuum manifold where CHF_{3} solvent (ca. 0.25 mL) followed by a known pressure of POF_{3} were condensed at $-196{ }^{\circ} \mathrm{C}$ onto $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$, before flame sealing the tubes. The following sample compositions, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}: \mathrm{POF}_{3}=0.495,0.899,0.957$, and 3.56, were studied.

Attempted Bulk Synthesis of $\mathbf{N}\left(\mathbf{C H}_{3}\right)_{4} \mathbf{P O F}_{4}$. A weighed amount of anhydrous $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ was placed inside the drybox into a prepassivated (with ClF_{3}) Teflon-FEP container which was closed by a stainless steel valve. On the vacuum line, POF_{3} and CHF_{3} (large excess) were added to the Teflon container at $-196^{\circ} \mathrm{C}$. The mixture was warmed to $-140^{\circ} \mathrm{C}$ with agitation and kept at this temperature for 2 h . Attempts to isolate solid $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{POF}_{4}$ by removal of the CHF_{3} solvent under vacuum at $-126{ }^{\circ} \mathrm{C}$ produced a white solid of the correct weight expected for $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{POF}_{4}$, but its vibrational spectra recorded at room temperature showed an equimolar mixture of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{PO}_{2} \mathrm{~F}_{2}$ and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{PF}_{6}$. When this reaction was repeated either in other solvents, such as SO_{2} at $-78{ }^{\circ} \mathrm{C}, \mathrm{POF}_{3}$ at $-64^{\circ} \mathrm{C}$, or $\mathrm{CH}_{3} \mathrm{CN}$ at $-31^{\circ} \mathrm{C}$, or without a solvent at $25^{\circ} \mathrm{C}$ with use of 2 Torr of gaseous POF_{3} in a flamed out glass bulb, again only the dismutation products $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}$ $\mathrm{PO}_{2} \mathrm{~F}_{2}$ and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{PF}_{6}$ were observed as final room-temperature stable products.

Computational Methods. A variety of electronic structure calculations were performed in order to calculate the geometries, relative energies, and vibrational frequencies of the phosphorus and sulfur species. The electronic structure calculations were done at a number of different levels. The first set of calculations were done at the Hartree-Fock (HF) level with the program GRADSCF on Cray YMP and C90 computer systems. ${ }^{25}$ A polarized double- ζ valence basis set (DZP) from Dunning and Hay^{26} was used for F and O , and the McLean and Chandler sets ${ }^{27}(6 s / 4 p)$ were used for S and P augmented by $d(P)$ $=0.5$ and $\mathrm{d}(\mathrm{S})=0.6$. Subsequently, the DZP basis set was augmented by a set of diffuse p functions on all atoms (DZP+) with the following exponents: $\mathrm{p}(\mathrm{O})=0.059, \mathrm{p}(\mathrm{F})=0.074, \mathrm{p}(\mathrm{P})=0.035$, and $\mathrm{p}(\mathrm{S})=$ 0.041 . The geometries and frequencies of the lowest energy species were calculated at this level by using analytic derivative methods. ${ }^{28,29}$ The HF/DZP + second derivative results were used to calculate the molecular force fields with the program BMATRIX. ${ }^{25}$

[^2]

Figure 1. NMR spectra (7.0463 T) of a $0.90: 1.00$ molar ratio of $\mathrm{POF}_{3}: \mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ recorded in CHF_{3} solvent at $-140{ }^{\circ} \mathrm{C}$: (a) ${ }^{31} \mathrm{P}$ spectrum (121.497 MHz) and (b) ${ }^{19} \mathrm{~F}$ spectrum (282.409 MHz). The labeling scheme is as follows: (A) POF_{4}^{-}, (B) $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$, (C) $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}^{-} \mathrm{PF}_{5}^{-}$, (D) $\mathrm{HOF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}$, (E) POF_{3}, (S) CHF_{3} solvent. Peaks denoted by $\left(^{*}\right)$, (\dagger), and (\ddagger) are unassigned. Expansions in the ${ }^{31} \mathrm{P}$ spectrum of $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}^{-}(\mathrm{C})$ represent multiplet fine structures visible under high resolution on each branch of the triplet and pseudosextet (doublet of quintets) arising from the P_{A} and P_{B} environments, respectively, in structure \mathbf{A}.

Subsequent calculations on various conformers of the four molecular species were done with the program Gaussian94 on an SGI Indigo2. ${ }^{30}$ The basis set was of polarized double- ζ valence quality with the same basis set for F and O given above and the ($5 \mathrm{~s} / 3 \mathrm{p}$) set of McLean and Chandler augmented by the same d functions given above. The optimized HF geometries were used to calculate the MP2 energies ${ }^{31}$ at the frozen core level. The HF/DZVP geometries were used to calculate NMR chemical shifts at the nonlocal BLYP level with the nonlocal exchange potential of Becke ${ }^{32}$ and the nonlocal correlation potential of Lee, Yang, and Parr. ${ }^{33}$ The basis set for the NMR calculations was of triple- ζ form ${ }^{27,34}$ augmented by two sets of d polarization functions each formed from two Gaussian functions and an f polarization function. The origin problem for the NMR chemical shift calculations was handled by using the GIAO method. ${ }^{35}$ In order to compare to
(30) Gaussian 94: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian, Inc.; Pittsburgh, PA, 1995
(31) (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. Symp. 1976, 10, 1. Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. Symp. 1979, 13, 325. Handy, N. C.; Schaefer, H. F., III J. Chem. Phys. 1984, 81, 5031.
(32) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Becke, A. D. In The Challenge of d and f Electrons: Theory and Computation; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series, No. 394; American Chemical Society: Washington, DC, 1989; p 166. (c) Becke, A. D. Int. J. Quantum Chem. Symp. 1989, 23, 599.
(33) Lee, C.; Yang, W.; Parr, R. G. Phys, Rev. B 1988, 37, 785.
(34) Dunning, T., Jr. J. Chem. Phys. 1971, 55, 716.
experiment, the following standards were used: $\mathrm{CCl}_{3} \mathrm{~F}$ for F , $\left[\mathrm{PO}_{4}\right]^{3-}$ for P , and $\mathrm{H}_{2} \mathrm{O}$ for O . The difference in the shift from the standard is reported.

Density functional calculations were done with the program DGauss ${ }^{36}$ at the local (LDFT) level with a polarized double- ζ basis set (DZVP2). ${ }^{37}$ The local potential fit of Vosko, Wilk, and Nusair ${ }^{38}$ was used. Geometries were optimized at this level and frequencies were calculated by analytic derivative methods. ${ }^{39}$ These geometries were used to calculate the NMR chemical shifts ${ }^{40}$ at the IGLO^{41} and LORG levels. ${ }^{42}$

In order to calculate the dismutation reaction energies, additional calculations were done. All calculations were done with the HF geometries. The additional calculations were done with the correlationconsistent basis sets ${ }^{43,44}$ at the cc-VDZ and aug-cc-VTZ levels at the

[^3]Table 1. NMR Parameters for the $\mathrm{POF}_{4}^{-}, \mathrm{PO}_{2} \mathrm{~F}_{2}^{-}$, and $\mathrm{OF}_{2} \mathrm{POPF}_{5}^{-}$Anions and POF_{3} and $\mathrm{HOF}_{2} \mathrm{POPF}_{5}$ in CHF_{3} solution at $-140{ }^{\circ} \mathrm{C}$

species ${ }^{\text {a }}$	$\delta\left({ }^{31} \mathrm{P}\right), \mathrm{ppm}$		$\delta\left({ }^{19} \mathrm{~F}\right), \mathrm{ppm}$			coupling constants, Hz								
			$\begin{gathered} { }^{1} J \\ \left({ }^{31} \mathrm{P}_{\mathrm{A}}-\right. \\ \left.{ }^{19} \mathrm{~F}_{\mathrm{a}}\right) \end{gathered}$	$\begin{gathered} { }^{1} J \\ \left({ }^{31} \mathrm{P}_{\mathrm{B}}-\right. \\ \left.{ }^{19} \mathrm{Fb}\right) \end{gathered}$		$\begin{gathered} { }^{2} J \\ \left({ }^{31} \mathrm{P}_{\mathrm{A}}-\right. \\ \left.{ }^{31} \mathrm{P}_{\mathrm{B}}\right) \end{gathered}$	$\begin{gathered} { }^{2} J \\ \left({ }^{3}{ }^{1} \mathrm{P}_{\mathrm{A}}-\right. \\ \left.{ }^{1} \mathrm{H}\right) \\ \hline \end{gathered}$	$\begin{gathered} { }^{2} J \\ \left({ }^{19} \mathrm{~F}_{\mathrm{b}}-\right. \\ \left.{ }^{19} \mathrm{~F}_{\mathrm{c}}\right) \end{gathered}$	$\begin{gathered} { }^{3} J \\ \left({ }^{31} \mathrm{P}_{\mathrm{A}}-\right. \\ \left.{ }^{19} \mathrm{~F}_{\mathrm{b}}\right) \end{gathered}$	$\begin{gathered} { }^{3} J \\ \left({ }^{31} \mathrm{P}_{\mathrm{A}}-\right. \\ \left.{ }^{19} \mathrm{~F}_{\mathrm{c}}\right) \end{gathered}$				
	$\mathrm{P}_{\text {A }}$	P_{B}										F_{a}	F_{b}	F_{c}
$\mathrm{POF}_{4}{ }^{-}$		5.1 (quin) ${ }^{\text {b }}$		-61.6 (d)		819								
POF_{3}		3.9 (quar)		-92.1 (d)		1061								
$\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$		4.2 (tr)		-84.4 (d)		948								
$\mathrm{OF}_{2} \mathrm{POPF}_{5}{ }^{-}$	$\begin{aligned} & -28.9 \\ & (\text { tr, quin, d) } \end{aligned}$	$\begin{aligned} & -148.1 \\ & \quad(\mathrm{~d}, \text { quin, } \mathrm{d}, \mathrm{tr})^{c} \end{aligned}$	$\begin{gathered} -87.3 \\ (\mathrm{~d}) \end{gathered}$	$\begin{gathered} -63.0 \\ (\mathrm{~d}, \mathrm{~d}) \end{gathered}$	$\begin{aligned} & -79.8 \\ & (\mathrm{~d}, \text { quin })^{d} \end{aligned}$	979	736	729	3		55.3	7.4	3.9	3
$\mathrm{HOF}_{2} \mathrm{POPF}_{5}$	$\begin{array}{r} -27.4 \\ (\mathrm{tr}, \mathrm{~d}, \mathrm{~m}) \end{array}$	$\begin{aligned} & -131.9 \\ & (\mathrm{~d}, \text { quin, d, tr) } \end{aligned}$	$\begin{gathered} -86.9 \\ (\mathrm{~d}) \end{gathered}$	$\begin{array}{r} -63.9 \\ (\mathrm{~d}, \mathrm{~d}) \end{array}$	not obsd ${ }^{e}$	968	706	614		12	41.0			

[^4]MP2 level. In addition, higher levels of correlation were examined at the coupled cluster single and double excitation with a correction for triples ($\operatorname{CCSD}(\mathrm{T})$) level ${ }^{45}$ with the cc-VDZ basis set. The $\operatorname{CCSD}(\mathrm{T})$ calculations were done with the program MOLPRO. ${ }^{46}$

Results and Discussion

Synthesis and Properties of $\mathbf{N}\left(\mathrm{CH}_{3}\right)_{4} \mathbf{P O F}_{4}$. The synthesis of $\mathrm{POF}_{4}{ }^{-}$salts is very difficult and was achieved only from a soluble F^{-}ion source ${ }^{20}$ and POF_{3} in an inert solvent, such as CHF_{3}, at temperatures of about $-140^{\circ} \mathrm{C}$.

$$
\begin{equation*}
\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}+\mathrm{POF}_{3} \xrightarrow[-140^{\circ} \mathrm{C}]{\mathrm{CHF}_{3}} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{POF}_{4} \tag{8}
\end{equation*}
$$

Even at this low temperature, the $\mathrm{POF}_{4}{ }^{-}$anion already starts to dismutate according to (6), and at elevated temperatures equimolar mixtures of $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$salts are observed as the only products. Thus, our attempts to isolate solid $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4-}$ POF_{4} from solutions of $\mathrm{N}^{\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F} \text { and } \mathrm{POF}_{3} \text { in } \mathrm{CHF}_{3} \text { at }-126, ~}$ ${ }^{\circ} \mathrm{C}, \mathrm{SO}_{2}$ at $-78{ }^{\circ} \mathrm{C}, \mathrm{POF}_{3}$ at $-64^{\circ} \mathrm{C}$, or $\mathrm{CH}_{3} \mathrm{CN}$ at $-31^{\circ} \mathrm{C}$ produced only the dismutation products. Similarly, a solventfree reaction of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ with 2 Torr of gaseous POF_{3} at 35 ${ }^{\circ} \mathrm{C}$ did not result in $\mathrm{POF}_{4}-$ formation. In view of these difficulties, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{POF}_{4}$ could not be isolated as a stable solid and was characterized by its multinuclear NMR spectra in CHF_{3} solution at $-140^{\circ} \mathrm{C}$ (see below). These results are in accord with the earlier report ${ }^{12}$ that CsF and POF_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ at $50^{\circ} \mathrm{C}$ produced only $\mathrm{CsPO}_{2} \mathrm{~F}_{2}$ and CsPF_{6}.
${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR Spectroscopy. The ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra of about equimolar mixtures of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~F}$ and POF_{3} recorded at $-140^{\circ} \mathrm{C}$ in CHF_{3} (Figure 1 and Table 1) consist of several first-order multiplet patterns. An intense quintet centered at -75.1 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum is assigned to the $\mathrm{POF}_{4}{ }^{-}$ anion and has its doublet counterpart in the ${ }^{19} \mathrm{~F}$ NMR spectrum at -61.6 ppm with ${ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right)=819 \mathrm{~Hz}$ (peaks A in Figure 1). Although $\mathrm{POF}_{4}{ }^{-}$is expected to have a trigonal-bipyramidal geometry like the isoelectronic SOF_{4} molecule, with the oxygen and two fluorines occupying the equatorial plane and two fluorines occupying the axial positions, ${ }^{10,11}$ the limiting spectrum in which the axial and equatorial fluorines are inequivalent was

[^5]not observed at $-140{ }^{\circ} \mathrm{C}$. Rather, the spectra show that the $\mathrm{POF}_{4}{ }^{-}$anion, like $\mathrm{SOF}_{4},{ }^{47}$ is fluxional on the NMR time scale (see below).

A second major species (peaks B in Figure 1) exhibits a triplet at -14.2 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum and a doublet at -84.4 ppm in the ${ }^{19} \mathrm{~F}$ NMR spectrum $\left[{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right)=948 \mathrm{~Hz}\right]$ and is assigned to the previously characterized $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$anion. ${ }^{13,48,49}$ Resonances assigned to unreacted $\mathrm{POF}_{3}\left({ }^{19} \mathrm{~F},-92.1 \mathrm{ppm}\right.$, doublet (peaks E in Figure 1); ${ }^{31} \mathrm{P},-33.9 \mathrm{ppm}$, quartet (not shown in Figure 1); $\left.{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right) 1061 \mathrm{~Hz}\right)^{50,51}$ were also observed.

A fourth set of intense resonances (peaks C in Figure 1) is assigned to the oxygen-bridged $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}{ }^{-}$anion (structure A). The ${ }^{19} \mathrm{~F}$ resonance of the POF_{2} group occurs at -87.3 ppm

and is comprised of a doublet arising from coupling to the directly bonded phosphorus atom $\left[{ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{a}}\right)=979 \mathrm{~Hz}\right.$. The PF_{5} group displays an AX_{4} pattern in the ${ }^{19} \mathrm{~F}$ NMR spectrum with the doublet at -63.0 ppm and the quintet at -79.8 ppm $\left[{ }^{2} J\left({ }^{19} \mathrm{~F}_{\mathrm{b}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)=55.3 \mathrm{~Hz}\right]$. Both multiplets are split into doublets by their respective one-bond couplings to phosphorus $\left[{ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)=736 \mathrm{~Hz}\right.$ and ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)=729 \mathrm{~Hz}$ (one set of the quintets is masked by the intense CHF_{3} solvent doublet at -81.62 ppm). The ${ }^{31} \mathrm{P}$ NMR spectrum consists of two sets of intense complex multiplets. A triplet of quintets of doublets centered at -29.0 ppm is assigned to P_{A} and arises from ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{a}}\right),{ }^{3} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)$, and ${ }^{3} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)=3.9 \mathrm{~Hz}$. The multiplet at -148.1 ppm is assigned to P_{B}, which appears to be a sextet under low resolution conditions but is shown actually to be a severely overlapping doublet of quintets at higher resolution that arises from two nearly equal one-bond ${ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}$ couplings, namely ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)$ and ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)$. Resolution enhancement using a Gaussian line fit reveals that each line of the doublet of quintets pattern is further split into an overlapping doublet of triplets arising from ${ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{31} \mathrm{P}_{\mathrm{B}}\right)=3 \mathrm{~Hz}$ and ${ }^{4} J\left({ }^{19} \mathrm{~F}_{\mathrm{a}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)=3 \mathrm{~Hz}$ to give a pseudoquartet. The $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-$ $\mathrm{PF}_{5}{ }^{-}$anion has been previously characterized by ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy in $\mathrm{CH}_{3} \mathrm{CN}$ solution, ${ }^{48}$ and in view of the different solvent and large temperature difference, the NMR

[^6]parameters obtained in the present study are in good agreement with the published values (two spin-spin couplings not reported for the $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}{ }^{-}$anion in the previous study are reported in this study, i.e., ${ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{31} \mathrm{P}_{\mathrm{B}}\right)$ and $\left.{ }^{3} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)\right)$.

Several weak multiplets also appear in the ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra at $-140^{\circ} \mathrm{C}$. One set of multiplets (peaks D in Figure $1)$ is assigned to the protonated $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}^{-}$anion, namely, $\mathrm{HOF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}$ (structure B). In the ${ }^{31} \mathrm{P}$ spectrum, a triplet

(B)
$\left[{ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{a}}\right)=968 \mathrm{~Hz}\right]$ of doublets $\left[{ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{1} \mathrm{H}\right)=12 \mathrm{~Hz}\right]$ of unresolved multiplets due to P_{A} occurs at -27.4 ppm , and a doublet $\left[{ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)=614 \mathrm{~Hz}\right]$ of quintets $\left[{ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)=\right.$ $706 \mathrm{~Hz}]$ is observed for P_{B}. In the ${ }^{19} \mathrm{~F}$ NMR spectrum, a doublet $\left[{ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{a}}\right)\right]$ at -86.9 ppm due to the two F_{a} atoms and a doublet $\left[{ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)\right]$ of doublets $\left[{ }^{2} J\left({ }^{19} \mathrm{~F}_{\mathrm{b}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)=41 \mathrm{~Hz}\right]$ at -63.9 ppm due to the four F_{b} atoms are observed. The doublet of quintets, expected for F_{c}, has not been observed because of its relative broadness, low intensity, and/or probable overlap with the strong CHF_{3} solvent peak. Although the ${ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{31} \mathrm{P}_{\mathrm{B}}\right)$, ${ }^{3} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)$, and ${ }^{3} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)$ couplings were not observed under our resolution conditions because of their expected small magnitudes (cf. corresponding coupling constants for structure A in Table 1), the given assignments are tied together through either common coupling constants or constant relative intensities and growth patterns in different samples. The NMR parameters of the $\mathrm{HOF}_{2} \mathrm{PO}$ group are in good agreement with those reported for HOPOF_{2} in $\mathrm{CH}_{3} \mathrm{CN}$ solvent at room temperature, ${ }^{48}$ although ${ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right)$ was not observed for HOPOF_{2} in the previous study. In that study, the ${ }^{31} \mathrm{P}$ resonance of $\mathrm{HPO}_{2} \mathrm{~F}_{2}$ occurred to slightly higher frequency of $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$with ${ }^{19} \mathrm{~F}$ shifts being almost the same, and similar trends are noted for $\mathrm{HOF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}$ and $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}{ }^{-}$. The remaining very weak spectral features appearing in the ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra have not been assigned.

Warming a CHF_{3} solution containing $\mathrm{POF}_{4}{ }^{-}$from -140 to $-90{ }^{\circ} \mathrm{C}$ resulted in loss of the ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ resonances of $\mathrm{POF}_{4}{ }^{-}$ with only the $\mathrm{PO}_{2} \mathrm{~F}_{2}^{-}$and $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}^{-}$resonances remaining. The decomposition is in accord with global reaction 6 with POF_{4}^{-}dismutating to $\mathrm{PO}_{2} \mathrm{~F}_{2}^{-}$and PF_{6}^{-}by means of the intermediate dimeric $\mathrm{OF}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PF}_{5}^{-}$anion. Although no resonances attributed to the other dismutation product, $\mathrm{PF}_{6}{ }^{-}$, were observed in the ${ }^{19} \mathrm{~F}$ and the ${ }^{31} \mathrm{P}$ spectra, the solution at $-90^{\circ} \mathrm{C}$ contained a white precipitate of what is presumably $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{PF}_{6}$. The formation of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{PF}_{6}$ as a main product under these conditions was established by vibrational spectroscopy of the solid products.

A recent paper reports the preparation of POF_{4}^{-}by the hydrolysis of AgPF_{6} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature. ${ }^{13}$ The reported NMR parameters consist of a doublet in the ${ }^{19} \mathrm{~F}$ NMR spectrum at $-85.8 \mathrm{ppm},{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right)=1016 \mathrm{~Hz}$, and a triplet in the ${ }^{31} \mathrm{P}$ NMR spectrum, unconventionally reported in ppm at $-2.4,-10.9$, and -19.2 , with relative intensities characteristic of a quintet rather than a triplet. The ${ }^{31} \mathrm{P}$ chemical shift and scalar coupling differ significantly from those determined for POF_{4}^{-}in the present work, and in fact, the ${ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}$ coupling is more in line with that for tetracoordinate phosphorus. ${ }^{49}$ Moreover, the reported stability of the species at ambient temperature is not in agreement with the observed thermal instability of $\mathrm{POF}_{4}{ }^{-}$.

The NMR parameters for $\mathrm{POF}_{4}{ }^{-}$follow several previously established trends ${ }^{49-51}$ and are in accord with our expectations
for this ion. The ${ }^{19} \mathrm{~F}$ shielding decreases upon going from POF_{3} $\left[\delta\left({ }^{19} \mathrm{~F}\right),-92.1 \mathrm{ppm}\right]$ to $\mathrm{POF}_{4}^{-}\left[\delta\left({ }^{19} \mathrm{~F}\right),-61.6 \mathrm{ppm}\right]$ and from $\mathrm{PF}_{3}\left[\delta\left({ }^{19} \mathrm{~F}\right),-34.3 \mathrm{ppm}^{52}\right]$ to $\mathrm{PF}_{4}{ }^{-}$[average $\delta\left({ }^{19} \mathrm{~F}\right),-18.7$ ppm^{8}], and is a well-established trend for neutral fluorides and their fluoroanions. ${ }^{53}$ This shielding trend is also found for neutral fluorides and their cations, as in the structurally related pairs $\mathrm{SOF}_{3}{ }^{+}\left[\delta\left({ }^{19} \mathrm{~F}\right), 32 \mathrm{ppm}^{54}\right]>\mathrm{SOF}_{4}\left[\delta\left({ }^{19} \mathrm{~F}\right), 75 \mathrm{ppm}^{54}\right]$, $\mathrm{SF}_{3}{ }^{+}\left[\delta\left({ }^{19} \mathrm{~F}\right), 25.5\right.$ to $\left.30.5 \mathrm{ppm}^{55}\right]>\mathrm{SF}_{4}$ [average $\delta\left({ }^{19} \mathrm{~F}\right), 95$ $\left.\mathrm{ppm}^{56}\right]$, and $\mathrm{SeF}_{3}{ }^{+}\left[\delta\left({ }^{19} \mathrm{~F}\right), 6.0 \mathrm{ppm}^{57}\right]>\mathrm{SeF}_{4}$ [average $\delta\left({ }^{19} \mathrm{~F}\right)$, $\left.24.8 \mathrm{ppm}^{57}\right]$. On the basis of the simple "atom-in-a-molecule" approach to the paramagnetic contribution to nuclear shielding, ${ }^{58}$ the lowest molecular excitation energy is expected to increase with increasing positive charge so that the paramagnetic contribution to the shielding increases. Apparently, the effect of increased $\mathrm{E}-\mathrm{F}$ bond order in the more positively charged species, which causes greater deviations from the spherical symmetry of F^{-}and a larger paramagnetic contribution, is offset by the larger molecular excitation term. The opposite trend is noted in the ${ }^{31} \mathrm{P}$ shieldings, which increase in the order POF_{3} $\left[\delta\left({ }^{31} \mathrm{P}\right),-33.9 \mathrm{ppm}\right]<\mathrm{POF}_{4}^{-}\left[\delta\left({ }^{31} \mathrm{P}\right),-75.1 \mathrm{ppm}\right]$ and PF_{3} $\left[\delta\left({ }^{31} \mathrm{P}\right), 103.5 \mathrm{ppm}^{59}\right]<\mathrm{PF}_{4}^{-}\left[\delta\left({ }^{31} \mathrm{P}\right), 42.3 \mathrm{ppm}^{8}\right]$, and is also observed for the ${ }^{77} \mathrm{Se}$ shieldings $\mathrm{SeF}_{3}{ }^{+}\left[\delta\left({ }^{77} \mathrm{Se}\right), 1122 \mathrm{ppm}^{60}\right]$ $<\operatorname{SeF}_{4}\left[\delta\left({ }^{77} \mathrm{Se}\right), 1082 \mathrm{ppm}^{60}\right]$. Decreases in central element shielding with decreasing coordination number are general and correlate with increasing p-orbital populations associated with a more highly positive (electronegative) central atom. ${ }^{58}$

The ${ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right)$ coupling decreases in the order $\mathrm{POF}_{3}(1061$ $\mathrm{Hz})>\mathrm{POF}_{4}^{-}(819 \mathrm{~Hz})$. Analogous trends are observed for $\mathrm{PF}_{3}\left(1401 \mathrm{~Hz}^{59}\right)>\mathrm{PF}_{4}^{-}$(average, $1032 \mathrm{~Hz}^{8}$) and for the ${ }^{1} J\left({ }^{77} \mathrm{Se}-{ }^{19} \mathrm{~F}\right.$) couplings of $\mathrm{SeF}_{3}{ }^{+}\left(1213 \mathrm{~Hz}^{57}\right)>\mathrm{SeF}_{4}$ (average, $745 \mathrm{~Hz}^{61}$), which are consistent with a decrease in the bond order for the more polar $\mathrm{P}-\mathrm{F}$ and $\mathrm{Se}-\mathrm{F}$ bonds of $\mathrm{POF}_{4}^{-}, \mathrm{PF}_{4}^{-}$, and SeF_{4} relative to those of $\mathrm{POF}_{3}, \mathrm{PF}_{3}$, and $\mathrm{SeF}_{3}{ }^{+}$, respectively. The magnitudes of the scalar couplings can be correlated to the s-electron densities at the spin-coupled nuclei for a Fermi contact dominated spin-spin coupling mechanism. ${ }^{62}$ The decrease in scalar coupling is consistent with the anticipated decrease in s-character with increasing bond polarity and coordination number.

Fluxionality in POF_{4}^{-}and SOF_{4}. The $\mathrm{POF}_{4}{ }^{-}$anion, like its isoelectronic analog, $\mathrm{SOF}_{4},{ }^{47,63}$ undergoes rapid intramolecular exchange of its axial and equatorial fluorines. The mechanism by which the intramolecular ligand exchange process occurs in $\mathrm{POF}_{4}{ }^{-}$and SOF_{4} is most likely the classical Berry pseudorotation mechanism ${ }^{64}$ involving a pyramidal $C_{4 v}$ transition

[^7] Press: New York, 1987; Chapter 16, p 441.
(54) Brownstein, M.; Dean, P. A. W.; Gillespie, R. J. Chem. Commun. 1970, 9.
(55) Azeem, M.; Brownstein, M.; Gillespie, R. J. Can. J. Chem. 1969, 47, 4159.
(56) Muetterties, E. L.; Phillips, W. D. J. Am. Chem. Soc. 1959, 81, 1084.
(57) Brownstein, M.; Gillespie, R. J. J. Chem. Soc., Dalton Trans. 1973, 67.
(58) Jameson, C. J.; Mason, J. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987; Chapter 3, pp 63-67.
(59) Christe, K. O.; Dixon, D. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Wilson, W. W. Inorg. Chem. 1994, 33, 4911.
(60) Birchall, T.; Gillespie, R. J.; Vekris, S. L. Can. J. Chem. 1965, 43, 1672.
(61) Damarius, R.; Huppmann, P.; Lentz, D.; Seppelt, K. J. Chem. Soc., Dalton Trans. 1984, 2821.
(62) Jameson, C. J. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987; Chapter 4, pp 102-104.
(63) Dudley, F. B.; Shoolery, J. N.; Cady, G. H. J. Am. Chem. Soc. 1956, 78, 568.
(64) (a) Berry, R. S. J. Chem. Phys. 1960, 32, 933. (b) Wasada, H.; Hirao, K. J. Am. Chem. Soc. 1992, 114, 16.

Table 2. Calculated and Predicted Geometries of POF_{4}^{-}Compared to Calculated and Observed Geometries of Isoelectronic SOF_{4}

	$\mathrm{POF}_{4}{ }^{-}$				SOF_{4}			
	SCF/DZ+P	SCF/DZ $+\mathrm{P}^{+}$	LDF/DZVP2	pred	SCF/DZ + P	SCF/DZ $+\mathrm{P}^{+}$	LDF/DZVP2	obsd^{a}
$r(\mathrm{X}-\mathrm{O})(\mathrm{A})$	1.465	1.464	1.493	1.47	1.406	1.403	1.440	1.409
$r\left(\mathrm{X}-\mathrm{F}_{\text {eq }}\right)\left(\mathrm{A} \mathrm{A}^{\text {i }}\right.$)	1.583	1.579	1.630	1.59	1.529	1.528	1.592	1.539
$r\left(\mathrm{X}-\mathrm{F}_{\mathrm{ax}}\right)(\AA)$	1.648	1.646	1.677	1.65	1.583	1.581	1.634	1.596
$\angle \mathrm{O}-\mathrm{X}-\mathrm{F}_{\mathrm{ax}}(\mathrm{deg})$	98.3	97.93	99.4	98.6	97.2	97.36	98.2	97.7
$\angle \mathrm{F}_{\text {eq }}-\mathrm{X}-\mathrm{F}_{\text {eq }}(\mathrm{deg})$	113.0	112.4	114.5	113.4	111.4	111.8	111.7	112.8

${ }^{a}$ Values from refs 10 and 11.
state with four equivalent fluorine atoms. ${ }^{65}$ NMR spectroscopy alone cannot distinguish between this and other mechanisms that result in the permutation of fluorine nuclei. ${ }^{66,67}$ Other mechanisms have been favored for compounds such as $\mathrm{ClF}_{3},{ }^{68}$ which possesses two free valence electron pairs on the central atom, or $\mathrm{SiH}_{4} \mathrm{~F}^{-65}$ and $\mathrm{PH}_{4} \mathrm{~F},{ }^{69}$ where in the minimum energy structures, the two axial positions are occupied by one fluorine and one hydrogen ligand. Failure to slow the exchange process in POF_{4}^{-}at $-140{ }^{\circ} \mathrm{C}$ and in $\mathrm{SOF}_{4}{ }^{47}$ at $-150{ }^{\circ} \mathrm{C}$ indicates that both species have very low activation barriers to intramolecular exchange. This behavior contrasts with the fluxionality of $\mathrm{PF}_{4}{ }^{-}$ and SF_{4} for which limiting spectra have been obtained and activation barriers of $10.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for PF_{4}^{-8} and 11.8 (neat liquid) ${ }^{70}$ and $12.4 \mathrm{kcal} \mathrm{mol}^{-1}$ (gas phase) ${ }^{71}$ for SF_{4} have been determined by variable-temperature NMR experiments. The $v_{4}\left(\mathrm{~A}_{1}\right)$ and $v_{5}\left(\mathrm{~A}_{1}\right)$ antisymmetric combination of axial and equatorial scissoring bends in $\mathrm{PF}_{4}^{-} / \mathrm{SF}_{4}$ and $\mathrm{POF}_{4}^{-} / \mathrm{SOF}_{4}$, respectively, correspond to the motions involved in the Berry pseudorotation exchange mechanism. In $\mathrm{PF}_{4}{ }^{-8}$ and $\mathrm{SF}_{4}{ }^{72}$ $v_{4}\left(\mathrm{~A}_{1}\right)$ occurs at 210 and $228 \mathrm{~cm}^{-1}$, respectively, paralleling the experimentally determined activation barriers. In $\mathrm{POF}_{4}{ }^{-}$ and $\mathrm{SOF}_{4},{ }^{47}$ the respective $v_{5}\left(\mathrm{~A}_{1}\right)$ modes are very similar to each other but occur at significantly lower frequencies than their tetrafluoride counterparts, i.e., 169 and $174 \mathrm{~cm}^{-1}$, respectively, suggesting that the activation barriers for $\mathrm{POF}_{4}{ }^{-}$and SOF_{4} are significantly lower than those in PF_{4}^{-}and SF_{4}. These conclusions are borne out in more detail in our theoretical calculations of the transition states and energy barriers involved in this exchange (see below).

Theoretical Calculations. Since the isolation of solid $\mathrm{POF}_{4}{ }^{-}$ salts, particularly in a reasonably pure state for vibrational spectroscopy or as single crystals for X-ray diffraction, was frustrated by extreme experimental difficulties, the geometry, force fields, and some spectroscopic properties were calculated by density functional theory and molecular orbital theory at the self-consistent field (SCF) level. To test the adequacy of these calculations, the NMR shifts of POF_{4}^{-}were also calculated and compared to the observed ones. As an additional quality check and for obtaining realistic scaling factors for our methods, we have also calculated these data for the well-characterized isoelectronic SOF_{4} and other closely related molecules and ions.

Geometry of $\mathrm{POF}_{4}{ }^{-}$. The geometries of $\mathrm{POF}_{4}{ }^{-}$and isoelectronic SOF_{4} were calculated at the $\mathrm{SCF} / \mathrm{DZ}+\mathrm{P}, \mathrm{SCF} /$ $\mathrm{DZ}+\mathrm{P}^{+}$, and LDF/DZVP2 levels, and the results are summarized in Table 2. Both calculations resulted in a pseudo-trigonal-

[^8]bipyramidal structure of $C_{2 v}$ symmetry as the energy minimum, in accord with the experimentally known ${ }^{10,11}$ structure of SOF_{4}. By analogy with our previous study ${ }^{8}$ of the closely related PF_{3} and PF_{4}^{-}species, the SCF calculations gave better results than those at the DFT level. By using the calculated and the experimentally known ${ }^{10,11} \mathrm{SOF}_{4}$ results as a basis for correcting the calculated $\mathrm{POF}_{4}{ }^{-}$values, the following geometry, which we expect to be very close to the true geometry, is predicted for $\mathrm{POF}_{4}{ }^{-}$.

This geometry is very similar to that established ${ }^{10,11}$ for SOF_{4}. The bond angles are almost identical and all bonds in $\mathrm{POF}_{4}{ }^{-}$ are somewhat longer ($0.05-0.07 \AA$) than the corresponding ones in SOF_{4}, as expected for an increased polarity of the bonds due to the formal negative charge in $\mathrm{POF}_{4}{ }^{-}$. The compression of the $\mathrm{F}-\mathrm{P}-\mathrm{F}$ angles by the oxygen ligand, which causes a deviation from the ideal trigonal-bipyramidal geometry with 180° and 120° bond angles, is in accord with the electron domain of the $\mathrm{P}-\mathrm{O}$ double bond being larger than those of the $\mathrm{P}-\mathrm{F}$ single bonds. ${ }^{73}$

Vibrational Spectra and Force Field. The vibrational spectra of POF_{4}^{-}and SOF_{4} were also calculated at the different levels of theory. As with the geometry calculations, the SCF values, after appropriate scaling, duplicated best the experimentally observed ${ }^{47}$ spectra of SOF_{4} and, therefore, were used also for $\mathrm{POF}_{4}{ }^{-}$with the scaling factors taken from SOF_{4}. The results are summarized in Table 3. As can be seen from this table, the spectra of POF_{4}^{-}and SOF_{4} are very similar, except for the expected lowering of the frequencies in $\mathrm{POF}_{4}{ }^{-}$due to the formal negative charge which increases the polar character of the bonds in POF_{4}^{-}. The same trend was observed for the structurally closely related pair $\mathrm{PF}_{4}{ }^{-} / \mathrm{SF}_{4}$ (see Table 4).

Furthermore, the calculated frequencies, IR and Ra intensities, and ${ }^{32} \mathrm{~S}-{ }^{34} \mathrm{~S}$ isotopic shifts (see below) require the following corrections of the assignments previously proposed ${ }^{47}$ for SOF_{4}. The very weak and questionable $447-\mathrm{cm}^{-1}$ IR and $455-\mathrm{cm}^{-1}$ Raman bands cannot be due to $v_{4}\left(\mathrm{~A}_{1}\right)$, which should be of medium intensity in the IR, and probably belong to a combination band, such as $\left(v_{5}+v_{12}\right)\left(\mathrm{B}_{2}\right)=444 \mathrm{~cm}^{-1}$. Based on the calculated IR intensities, the medium strong $567-\mathrm{cm}^{-1}$ IR band cannot be due to $\nu_{9}\left(\mathrm{~B}_{1}\right)$, which should be of almost zero IR intensity, and is reassigned to $v_{4}\left(\mathrm{~A}_{1}\right)$. Since $v_{4}\left(\mathrm{~A}_{1}\right), v_{6}\left(\mathrm{~A}_{2}\right)$, $\nu_{9}\left(\mathrm{~B}_{1}\right)$, and $\nu_{11}\left(\mathrm{~B}_{2}\right)$ should all exhibit significant Raman intensities and occur within $12 \mathrm{~cm}^{-1}$ of each other, but only one Raman band at $566 \mathrm{~cm}^{-1}$ is observed in this region, a quadruple coincidence of Raman bands at $566 \mathrm{~cm}^{-1}$ must be assumed. The revised assignments are given in Table 3 and satisfy all

[^9]Table 3. Calculated Vibrational Frequencies of POF_{4}^{-}Compared to Calculated and Observed Frequencies of SOF_{4}

IR and Raman activity	assignmt in point group $C_{2 v}$		approx mode description	SOF_{4}				$\mathrm{POF}_{4}{ }^{-}$		
			obsd freq, cm^{-1} (int)	calcd SCF freq (IR/Ra int)		calcd SCF freq (IR/Ra int)				
			$\mathrm{IR}^{\text {a }}$	Raman ${ }^{\text {a }}$	unscaled	${\text { scaled }{ }^{\text {b }}}^{\text {d }}$	unscaled	scaled $^{\text {c }}$		
IR, RA	A_{1}	ν_{1}		$v \mathrm{X}=\mathrm{O}$	1380 vs	1380 (0.7)p	1471 (338/4.3)	1380	1351 (418/3.7)	1267
		ν_{2}		v sym $\mathrm{XF}_{2 \mathrm{eq}}$	796 m	795 (10)p	894 (59/13.8)	796	832 (62/7.3)	741
		ν_{3}	v sym $\mathrm{XF}_{2 \mathrm{ax}}$	588 mw	587 (1.7)p	666 (6.7/4.1)	593	540 (15/1.4)	481	
		ν_{4}	sym comb of eq and ax δ sciss	567 ms	566 (1.7)	614 (44/1.0)	565	566 (32/0.9)	521	
		ν_{5}	asym comb of eq and ax δ sciss		174 (0.4)	209 (0.1/0.3)	192	183 (0/0.1)	169	
-, RA	A_{2}	ν_{6}	τ		566 (1.7)	600 (0/1.0)	553	535 (0/0.6)	493	
IR, RA	B_{1}	ν_{7}	v sym $\mathrm{XF}_{2 \mathrm{ax}}$	819 vs	815 sh	942 (611/0.1)	839	795 (623/0)	708	
		ν_{8}	mix of δ wag $\mathrm{X}=\mathrm{O}$ and δ wag $\mathrm{XF}_{2 \mathrm{eq}}$	639 ms	640 sh	691 (70/0.5)	636	619 (75/0.4)	570	
		ν_{9}	mix of δ wag $\mathrm{X}=\mathrm{O}$ and δ wag $\mathrm{XF}_{2 \mathrm{eq}}$		566 (1.7)	600 (0.1/2.2)	553	526 (0.2/1.6)	484	
IR, RA	B_{2}	ν_{10}	v asym XF 2 eq	926 s	924 (0.2)	1030 (319/1.3)	918	935 (368/0.3)	833	
		ν_{11}	sym comb of equat rock and axial bend	558 ms	566 (1.7)	610 (44/2.3)	562	558 (51/1.7)	514	
		ν_{12}	asym comb of equat rock and axial bend	270 vw	265 (0.7)	292 (0.9/1.2)	269	266 (2.7/0.7)	245	

${ }^{a}$ Data from ref 47 , except for reassigning v_{9} to v_{4}, eliminating the assignment of the extremely weak and questionable 447 IR and $455 \mathrm{~cm}^{-1} \mathrm{Ra}$ bands to $v_{4}\left(\mathrm{~A}_{1}\right)$ and assuming a quadruple coincidence of ν_{4}, v_{6}, v_{9}, and ν_{11} at $566 \mathrm{~cm}^{-1}$ in the Raman spectrum. ${ }^{b}$ The stretching and deformation frequencies were multiplied by empirical factors of 0.8908 and 0.9210 , respectively, to maximize their fit with the observed frequencies, except for v_{1}, which was multiplied by 0.9381 to exactly duplicate the observed frequency. ${ }^{c}$ The empirical scaling factors from SOF_{4} were applied to $\mathrm{POF}_{4}{ }^{-}$.

Table 4. Comparison of the Calculated (SCF) Vibrational Frequencies (Observed Values in Parentheses) of the Isoelectronic Pairs $\mathrm{SOF}_{4} / \mathrm{POF}_{4}^{-}$and $\mathrm{SF}_{4} / \mathrm{PF}_{4}^{-}$

XOF_{4} in $C_{2 v}$	$\mathrm{POF}_{4}{ }^{-a}$	$\mathrm{SOF}_{4}{ }^{a}$	$\mathrm{PF}_{4}{ }^{-b}$	$\mathrm{SF}_{4}{ }^{b}$	
$\mathrm{~A}_{1}$	v_{1}	1267	$1380(1380)$		
	v_{2}	741	$796(796)$	$795(798)$	(892)
	v_{3}	481	$593(588)$	$416(422)$	(558)
	v_{4}	521	$565(567)$	$464(446)$	(533)
	v_{5}	169	$192(174)$	$201(210)$	(227)
A_{2}	v_{6}	493	$553(566)$	$392(-)$	$(-)$
B_{1}	v_{7}	708	$839(819)$	$523(515)$	(729)
	v_{8}	570	$636(639)$		
	v_{9}	484	$553(566)$	$446(446)$	(474)
B_{2}	v_{10}	833	$918(926)$	$746(745)$	(867)
	v_{11}	514	$562(558)$		
	v_{12}	245	$269(270)$	$293(290)$	(353)

${ }^{a}$ Data from Table 3. ${ }^{b}$ Data from ref 8.
the frequency, intensity, and isotopic shift requirements from our calculations.

The symmetry force constants and potential energy distribution for $\mathrm{POF}_{4}{ }^{-}$and SOF_{4} are given in Tables 5 and 6, respectively. As can be seen from the potential energy distribution, ν_{4} and ν_{5} and also ν_{11} and ν_{12} are symmetric and antisymmetric combinations of their corresponding symmetry coordinates. Their motions can be depicted in the following way.

To probe the agreement of our calculated force fields with available experimental data, the ${ }^{32} \mathrm{~S}$ and ${ }^{34} \mathrm{~S}$ isotopic shifts were calculated from the SCF second derivatives for SOF_{4}. The calculated shifts were scaled by the same factors as the corresponding frequencies and are compared in Table 7 with the reported ${ }^{47}$ experimental data. As can be seen from Table 7, our calculated isotopic shifts are in good agreement with the experimental values and support our revised assignments for SOF_{4}.

Since the internal stretching force constants are a measure for the bond strengths, these constants were calculated for $\mathrm{POF}_{4}{ }^{-}$ and SOF_{4} from the symmetry force constants of Table 5, using the explicit F matrix previously reported ${ }^{47}$ for SOF_{4}. The results are listed in Table 8 and are compared to the literature values
for $\mathrm{POF}_{2}{ }^{-},{ }^{59} \mathrm{PF}_{4}{ }^{-},{ }^{8} \mathrm{POF}_{3},{ }^{74} \mathrm{PF}_{3},{ }^{75} \mathrm{SF}_{4},{ }^{72}$ and $\mathrm{SOF}_{2} .{ }^{59}$ In addition to the expected trends, i.e., increasing covalency and bond strength with increasing oxidation state and positive charge, ${ }^{8}$ there is one unexpected feature. When adding an oxygen ligand to PF_{4}^{-}, the axial $\mathrm{P}-\mathrm{F}$ bonds are strengthened much more than the equatorial ones. Thus, $f_{\mathrm{r}}\left(\mathrm{PF}_{\mathrm{ax}}\right)$ increases from 1.82 to $3.47 \mathrm{mdyn} / \AA$ and the axial bond lengths are reduced from 1.74 to $1.65 \AA$, while $f_{\mathrm{r}}\left(\mathrm{PF}_{\mathrm{eq}}\right)$ only increases from 3.94 to $4.96 \mathrm{mdyn} / \AA$ and the equatorial bond lengths are only reduced from 1.60 to $1.59 \AA$. A similar, although less pronounced, effect is observed for the $\mathrm{SF}_{4} / \mathrm{SOF}_{4}$ couple. It appears that the ionic character of the axial bonds, which contain strong ionic contributions and can be described as semi-ionic, three-center-four-electron bonds, ${ }^{76}$ is reduced more by the oxidative oxygenation than that of the more covalent equatorial bonds. The increase in the equatorial bond strength from $\mathrm{PF}_{4}{ }^{-}$ to POF_{4}^{-}is as expected and is comparable to that encountered on going from the predominantly covalent PF_{3} to POF_{3} (see Table 8).
$C_{4 v}$ Transition States and Energy Barriers toward Intramolecular Fluorine Ligand Exchange. The $v_{5}\left(\mathrm{~A}_{1}\right)$ vibration (see above) exhibits the lowest frequency and directly leads to the $C_{4 v}$ transition state, which is the lowest energy pathway in these molecules for the equatorial-axial fluorine exchange ${ }^{8}$ by the following Berry-type ${ }^{64}$ pseudorotation exchange mechanism.

The $C_{4 v}$ transition states, which represent the activation energy barriers for this exchange, ${ }^{8}$ were calculated for $\mathrm{POF}_{4}{ }^{-}, \mathrm{SOF}_{4}$, $\mathrm{PF}_{4}{ }^{-}$, and SF_{4} to support our conclusions from the above NMR data that the barriers in the XOF_{4} species are significantly lower than those in the corresponding XF_{4} species. The $C_{4 v}$ structures were calculated at the SCF/DZ+P level, and MP2 energies were calculated at these geometries. The vibrational frequencies were

[^10]Table 5. Scaled ${ }^{a}$ SCF Force Fields ${ }^{b}$ of POF_{4}^{-}and SOF_{4}

$\mathrm{POF}_{4}{ }^{-}$													
	F_{11}	F_{22}	F_{33}	F_{44}	F_{55}	$\mathrm{F}_{66}=2.08$					$\mathrm{F}_{10,10}$	$\mathrm{F}_{11,11}$	$\mathrm{F}_{12,12}$
F_{11}	9.76						F_{77}	F_{88}	F_{99}	$\mathrm{F}_{10,10}$	4.88		
F_{22}	0.20	5.03				$\overline{\mathrm{F}} 77$	3.26			$\mathrm{F}_{11,11}$	0.97	2.37	
F_{33}	0.68	1.20	3.68			F_{88}	-1.13	2.31		$\mathrm{F}_{12,12}$	0.18	0.50	0.64
F_{44}	-0.51	0.56	0.17	1.60		F_{99}	0.67	-0.24	1.68				
F_{55}	-0.15	0.13	0.14	0.64	0.76								
F_{11}	11.57						F_{77}	F_{88}	F99	$\mathrm{F}_{10,10}$	5.35		
F_{22}	0.09	5.44				F_{77}	4.44			$\mathrm{F}_{11,11}$	1.13	2.77	
F_{33}	0.62	0.96	4.48			F_{88}	-1.28	2.69		$\mathrm{F}_{12,12}$	0.16	0.53	0.68
F_{44}	-0.53	0.53	0.15	1.26		F_{99}	0.79	-0.25	2.02				
F_{55}	-0.098	0.098	0.11	0.48	0.57								

${ }^{a}$ The calculated SCF force constants were scaled by multiplication with the square or product of the corresponding scaling factors given in footnote b of Table $3 .{ }^{b}$ Stretching constants in mdyn $/ \AA$, deformation constants in mdyn \AA / rad^{2}, and stretch - bend interaction constants in mdyn/ rad.

Table 6. Potential Energy Distributions ${ }^{a}$ for $\mathrm{POF}_{4}{ }^{-}$and SOF_{4} Based on Their SCF Force Fields

$C_{2 v}$		$\mathrm{POF}_{4}{ }^{-}$		SOF_{4}	
		freq, cm^{-1}	PED (\%)	freq, cm^{-1}	PED (\%)
A_{1}	ν_{1}	1267	$64.3(1)+14.5(4)+11.5(5)+9.4(2)$	1380	$55.4(1)+20.0(4)+15.7(5)+8.6(2)$
	ν_{2}	741	$67.8(2)+16.8(3)+7.2(4)+6.2(5)+2.0(1)$	796	$62.3(2)+15.3(3)+10.8(4)+9.0(5)+2.5(1)$
	ν_{3}	481	$44.0(3)+28.4(4)+14.9(2)+12.5(5)$	593	$65.0(3)+14.9(2)+11.5(4)+7.8(5)+0.9(1)$
	ν_{4}	521	$45.7(4)^{a}+27.1(5)^{a}+22.9(3)+3.5(2)$	565	$65.1(4)+31.1(5)+1.9(3)+1.9(2)$
	ν_{5}	169	$73.4(5)^{a}+26.3(4)^{a}$	192	$75.3(4)+24.5(5)$
A_{2}	ν_{6}	493	100(6)	553	100(6)
B_{1}	ν_{7}	708	$68.2(7)+17.2(9)+14.6(8)$	839	$66.8(7)+17.3(9)+15.8(8)$
	ν_{8}	570	$53.3(8)+46.1(9)$	636	$51.7(9)+47.6(8)$
	ν_{9}	484	$61.6(9)+37.8(8)$	553	$58.1(9)+41.7(8)$
B_{2}	ν_{10}	833	$59.2(10)+30.4(12)+10.4(11)$	918	$58.1(10)+31.1(12)+10.7(11)$
	ν_{11}	514	$63.4(12)^{a}+34.6(11)^{a}+2.1(10)$	562	$61.1(12)+37.1(11)+1.8(10)$
	ν_{12}	245	$80.5(12)^{a}+19.0(11)^{a}$	269	$83.5(12)+16.0(11)$

[^11]Table 7. Calculated and Observed ${ }^{32}$ S $-{ }^{34}$ S Isotopic Shifts of SOF $_{4}$

		freq, cm^{-1}	Δv calcd, cm^{-1}	Δv obsd, ${ }^{a} \mathrm{~cm}^{-1}$
$\mathrm{~A}_{1}$	ν_{1}	1380	16.3	$\sim 15^{b}$
	ν_{2}	796	2.1	
	ν_{3}	588	0.4	$\sim 2.3^{c}$
	v_{4}	567	3.1	
	v_{5}	174	0	
$\mathrm{~A}_{2}$	v_{6}	566	0	13.1
$\mathrm{~B}_{1}$	ν_{7}	819	13.6	2.4
	v_{8}	639	2.9	
	v_{9}	566	0.1	14.0
$\mathrm{~B}_{2}$	v_{10}	926	13.8	$\sim 2.5^{c}$
	v_{11}	558	3.2	
	v_{12}	270	0	

[^12]Table 8. Stretching Force Constants (mdyn/ \AA) of POF_{4}^{-}and SOF_{4} Compared to Those of $\mathrm{POF}_{2}^{-}, \mathrm{PF}_{4}^{-}, \mathrm{POF}_{3}, \mathrm{PF}_{3}, \mathrm{SF}_{4}$, and SOF_{2}

	$\mathrm{POF}_{2}{ }^{-a}$	$\mathrm{POF}_{4}{ }^{-b}$	$\mathrm{PF}_{4}{ }^{-c}$	$\mathrm{POF}_{3}{ }^{d}$	$\mathrm{PF}_{3}{ }^{e}$	$\mathrm{SOF}_{4}{ }^{b}$	$\mathrm{SF}_{4}{ }^{f}$	$\mathrm{SOF}_{2}{ }^{a}$
$f_{\mathrm{r}}, \mathrm{eq}$	2.68	4.96	3.94	6.35	5.49	5.40	5.36	4.06
$f_{\mathrm{r}}, \mathrm{ax}$		3.47	1.82			4.46	3.25	
$f(\mathrm{X}=\mathrm{O})$	8.34	9.76		11.38		11.57		11.12

[^13]also calculated for these transition states, and each state exhibits, as expected, one imaginary frequency ranging from $129 \mathrm{~cm}^{-1}$ in POF_{4}^{-}to $189 \mathrm{~cm}^{-1}$ in SF_{4}. The results are summarized in Table 9. The energies of the transition states, which represent
the barriers for the equatorial-axial fluorine ligand exchange, are summarized in Table 10 and are compared to the experimental values for SF_{4} and $\mathrm{PF}_{4}-.{ }^{8}$ As can be seen from Table 10 , the SCF values differ by only $1-2 \mathrm{kcal}$ from the MP2 values and both agree well with the experimentally available data. Therefore, even though no experimental data are available due to the low barrier heights, the values for $\mathrm{POF}_{4}{ }^{-}$and SOF_{4} are also expected to be close to the real numbers. The results from these calculations show that the barriers to axial-equatorial fluorine ligand exchange in the XOF_{4} species $(3.6 \pm 1 \mathrm{kcal}$ mol^{-1}) are indeed significantly lower than those (11.3 ± 1.1 $\mathrm{kcal} \mathrm{mol}^{-1}$) in the corresponding XF_{4} species and readily account for the different exchange rates observed in the NMR experiments (see above).

The observed differences in the fluorine ligand exchange rates of $\mathrm{POF}_{4}^{-}, \mathrm{SOF}_{4}, \mathrm{PF}_{4}^{-}$, and SF_{4} can readily be explained from their geometries. In SOF_{4} and POF_{4}^{-}, the $\mathrm{F}_{\mathrm{ax}}-\mathrm{X}-\mathrm{F}_{\mathrm{ax}}$ and $\mathrm{F}_{\text {eq }}-$ $\mathrm{X}-\mathrm{F}_{\mathrm{eq}}$ bond angles are already much closer to the ideal $C_{4 v}$ angle of about 142° and therefore require less deformation energy than those in SF_{4} and PF_{4}^{-}to reach the $C_{4 v}$ geometry of the transition state. The sums of the angle deformations required for reaching the $C_{4 \nu}$ transition state geometries for these species are as follows: $\mathrm{SF}_{4}, 71.5^{\circ} ; \mathrm{PF}_{4}^{-}, 68.4^{\circ} ; \mathrm{SOF}_{4}, 51.8^{\circ}$; $\mathrm{POF}_{4}^{-}, 49.4^{\circ}$. This order parallels the inversion barriers that have been found $\left(\mathrm{SF}_{4}, 12 \mathrm{kcal} / \mathrm{mol} ; \mathrm{PF}_{4}^{-}, 10.3 \mathrm{kcal} / \mathrm{mol} ; \mathrm{SOF}_{4}\right.$, $4 \mathrm{kcal} / \mathrm{mol} ; \mathrm{POF}_{4}^{-}, 3 \mathrm{kcal} \mathrm{mol}{ }^{-1}$) and may provide a useful general relationship for the estimation of inversion barriers in similar molecules. A brief search for other low-lying transition states for POF_{4}^{-}showed that states, such as the $C_{3 v}$ geometry,

Table 9. Vibrational Frequencies, Infrared and Raman Intensities, and Geometries of the $C_{4 v}$ Transition States of $\mathrm{POF}_{4}^{-}, \mathrm{SOF}_{4}, \mathrm{PF}_{4}^{-}$, and SF_{4}

geometry	POF_{4}^{-}	SOF_{4}	PF_{4}^{-}	
$r(\mathrm{XF})(\AA)$	1.619	1.562	1.676	
$r(\mathrm{XO})(\AA)$	1.462	1.399		
CFXF (deg)	83.7	84.1	82.0	83.2
$\angle \mathrm{OXF}(\mathrm{deg})$	109.3	108.7		

Vibrational Frequencies and Intensities									
$C_{4 v}$		freq, cm^{-1} (IR, RA int ${ }^{a}$)							
		unscaled	scaled $^{\text {b }}$	unscaled	scaled ${ }^{\text {b }}$	unscaled	scaled b	unscaled	scaled ${ }^{\text {b }}$
A_{1}	$v \mathrm{X}=\mathrm{O}$	1362 (366, 4.1)	1278	1486 (323, 4.7)	1394				
	v sym XF_{4} in phase	$796(55,6.9)$	709	860 (553, 13.7)	766	$790(183,6.0)$	704	$899(115,13.7)$	801
	δ sym XF ${ }_{4}$	$552(50,1.0)$	508	$604(56,1.7)$	556	$544(23,1.3)$	501	615 (43, 2.4)	566
B_{1}	v sym XF_{4} out of phase	544 (0, 1.1)	485	649 (0, 2.9)	578	468 (0, 2.3)	417	$614(0,4.9)$	547
	δ sym XF_{4} out of phase	129 i	119	156 i	144	173 i	159	189i	174
B_{2}	δ sciss XF_{4}	$582(0,0.7)$	536	$651(0,1.3)$	600	$531(0,0.6)$	489	613 (0, 1.2)	565
E	v sym XF 4	879 (1000, 0.2)	783	992 (940, 1.0)	884	$722(854,5.4)$	643	$905(847,5.1)$	806
	$\delta \mathrm{OXF}_{4}$	597 (111, 1.5)	550	658 (109, 1.8)	606				
	δ asym XF ${ }_{4}$	413 (6, 2.8)	380	463 (3, 4.3)	426	493 (20, 0)	454	$570(43,0.1)$	525

${ }^{a}$ Ir intensities in km/mol. ${ }^{b}$ The empirical scaling factors from Table 3, footnote b, were used.

Table 10. Activation Energy Barriers ($\mathrm{kcal} / \mathrm{mol}$) for the Berry-Type Exchange of Axial and Equatorial Fluorine Ligands in $\mathrm{POF}_{4}^{-}, \mathrm{SOF}_{4}, \mathrm{PF}_{4}^{-}$, and SF_{4}

method $^{a, b}$	species	$E\left(C_{2 v}-C_{4 v}\right)$	$E\left(C_{2 v}-C_{4 v}\right)$ +ZPE	exptl value
SCF	SF_{4}	12.4	12.3	11.8 (liquid), ${ }^{c}$
MP 2	SF_{4}	10.3	10.3	12.4 (gas) ${ }^{d}$
SCF	PF_{4}^{-}	11.4	11.4	
$\mathrm{MP2}$	PF_{4}^{-}	10.2	10.2	10.3^{e}
SCF	SOF_{4}	5.2	5.0	
MP 2	SOF_{4}	3.6	3.3	
SCF	POF_{4}^{-}	3.4	3.2	
MP 2	POF_{4}^{-}	2.7	2.5	

${ }^{a}$ All calculations were carried out with the same polarized double- ζ basis set. ${ }^{b}$ Density Functional Theory calculations were also carried out for these transition states with the same basis set and yielded values that were consistently about $2-4 \mathrm{kcal} / \mathrm{mol}$ lower than the MP2 values. ${ }^{c}$ Reference 70. ${ }^{d}$ Reference 71. ${ }^{e}$ Reference 8.

were at least $20 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than the $C_{4 v}$ structure and in some cases were not transition states.

NMR Chemical Shift Calculations. NMR chemical shift calculations were carried out with the GIAO method ${ }^{35}$ at the nonlocal BLYP level ${ }^{32,33}$ with use of a triple- ζ basis set augmented by two polarization functions and the HF/DZVP geometries. The results for $\mathrm{SF}_{4}, \mathrm{PF}_{4}^{-}, \mathrm{SOF}_{4}$, and $\mathrm{POF}_{4}{ }^{-}$are summarized in Table 11. Our calculated chemical shift values are consistently low by about $18 \pm 7 \mathrm{ppm}$, and the chemical shift differences within a given compound are in good agreement with experiment. In view of the strong influence of conditions (such as the physical state of the compound, solvent, and temperature), the calculated values are in good agreement with the experimental ones and lend further support to our NMR spectroscopic identification of the POF_{4}^{-}anion given above. They also demonstrate that the species, having a ${ }^{31} \mathrm{P}$ shift of -10.9 ppm and previously attributed to $\mathrm{POF}_{4}{ }^{-},{ }^{13}$ cannot be due to this anion.

Chemical shift calculations were carried out also at the LORG 42 and IGLO^{41} levels using a TZVP basis set (see Table 2). For $\mathrm{POF}_{4}{ }^{-}$and SF_{4}, the LORG ${ }^{19} \mathrm{~F}$ NMR shifts show better agreement with experiment than the other two methods, but after an empirical adjustment of 18 ppm to the GIAO values, the
latter method gives for all compounds the most consistent agreement with experiment.

Reaction Energies. As already pointed out above, the thermal stabilities and dismutation characteristics of isoelectronic SOF_{4} and POF_{4}^{-}differ dramatically. It was important to establish whether this different behavior is due to thermodynamics or kinetics. A search of the thermochemical literature implied that the reaction energies of the POF_{4}^{-}and SOF_{4} dismutation reactions differ by about $70 \mathrm{kcal} \mathrm{mol}^{-1}$. Such a huge difference would be very remarkable for these isoelectronic systems and prompted us to examine these data in more detail.

The value of $-76 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$, quoted by Larsen and McMahon for the dismutation reaction of $\mathrm{POF}_{4}{ }^{-},{ }^{6}$ was based on their fluoride ion affinity measurements. However, fluoride affinity values alone are insufficient to derive the required heats of formation of the complex anions, and one must also know the heats of formation of the neutral parent molecules. Unfortunately, these authors quoted neither the values nor the sources of the $\Delta H_{\mathrm{f}}{ }^{\circ}$ values of the three necessary parent molecules, $\mathrm{POF}_{3}, \mathrm{PO}_{2} \mathrm{~F}$, and PF_{5}. Using the JANAF values ${ }^{16,17}$ of -295.6 and $-376.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\Delta H_{\mathrm{f}}^{\circ}$ of POF_{3} and PF_{5}, respectively, and a published value of $-171.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\Delta H_{\mathrm{f}}^{\circ}$ of $\mathrm{PO}_{2} \mathrm{~F}$, which was derived from tungsten transport measurements, ${ }^{14}$ and Larsen and McMahon's fluoride ion affinities ${ }^{6}$ (Scheme 1), one obtains a more plausible value of $-36 \mathrm{kcal} \mathrm{mol}^{-1}$ for the dismutation energy of POF_{4}^{-}, which is in excellent agreement with our values calculated by $a b$ initio methods (see Table 12).

The second set of data that needed scrutiny were the heats of formation of $\mathrm{SO}_{2} \mathrm{~F}_{2}$ and SOF_{4} (the $\Delta H_{\mathrm{f}}{ }^{\circ}$ value of SF_{6} is well determined ${ }^{16}$). Although $\mathrm{SO}_{2} \mathrm{~F}_{2}$ has been included in the JANAF tables, the selected values were based on percent conversions for reaction 9 between 110 and $700^{\circ} \mathrm{C}$, which were

$$
\begin{equation*}
\mathrm{SO}_{2}+\mathrm{Cl}_{2}+2 \mathrm{HF} \rightarrow \mathrm{SO}_{2} \mathrm{~F}_{2}+2 \mathrm{HCl} \tag{9}
\end{equation*}
$$

taken from a 1963 U.S. Patent. ${ }^{77}$ However, the listed value of $-181.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\Delta H_{\mathrm{f}}^{\circ}$ of $\mathrm{SO}_{2} \mathrm{~F}_{2}$ differs significantly from an earlier value of $-205 \mathrm{kcal} \mathrm{mol}^{-1}$, which was derived from electron impact studies ${ }^{18}$ and was not considered for the JANAF tables based on their adoption of a poor $D(\mathrm{~S}-\mathrm{F})$ value for SF_{6}. Similarly, the value for $\Delta H_{\mathrm{f}}^{\circ}$ of SOF_{4} is poorly determined. There is only one experimental value of $-235.7 \mathrm{kcal} \mathrm{mol}^{-1}$, derived from tungsten transport studies, ${ }^{14}$ and one estimated value of $-228.0 \mathrm{kcal} \mathrm{mol}^{-1}$, which is coupled to the $\mathrm{SO}_{2} \mathrm{~F}_{2}$ value of $-181.3 \mathrm{kcal} \mathrm{mol}^{-1}$. The coupling of this estimate to

[^14]Table 11. Comparison of Calculated and Observed Chemical Shifts ${ }^{a}$ (ppm) for $\mathrm{SF}_{4}, \mathrm{PF}_{4}^{-}, \mathrm{SOF}_{4}$, and $\mathrm{POF}_{4}{ }^{-}$

compd	obsd chem shift	calculated relative chemical shift			
		GIAO/TZ2PF/BLYP		$\frac{\text { LORG/TZVP/LDFT }}{\text { unadjusted }}$	$\underline{\text { IGLO/TZVP/LDFT }}$
		unadjusted	adjusted ${ }^{\text {f }}$		unadjusted
SF_{4}					
${ }^{19} \mathrm{~F}_{\text {ax }}$	$97.73^{\text {b }}$	78.0	96	91	155
${ }^{19} \mathrm{~F}_{\text {eq }}$	37.03	23.0	41	54	84
${ }_{33} \mathrm{~S}^{\text {eq }}$		493.4	511.4	478	490
$\mathrm{PF}_{4}{ }^{-}$					
${ }^{19} \mathrm{~F}_{\mathrm{ax}}$	$9.3{ }^{\text {c }}$	-10.1	7.9	-3.1	24
${ }^{19} \mathrm{~F}_{\text {eq }}$	-46.7	-65.0	-47	-83	-57
${ }^{31} \mathrm{P}{ }^{\text {eq }}$	40.5	26.8	44.8	43	46
SOF_{4}					
${ }^{19}{ }^{19}$ ax ${ }^{19}$	av 75^{d}	$\left.\begin{array}{l}64.3 \\ 37.3\end{array}\right\} \quad 50.8$	68.8	$\left.\begin{array}{l}133 \\ 18\end{array}\right\} \quad 126$	$\left.\begin{array}{l}180 \\ 148\end{array}\right\} \quad 164$
${ }^{13} \mathrm{~F}_{\text {eq }} \mathrm{S}$		[368.4	286.4	118	148
${ }^{17} \mathrm{O}$		232.4	250.4	287	283
$\mathrm{POF}_{4}{ }^{-}$					
${ }^{19}{ }^{19} \mathrm{~F}_{\text {ax }}$	av $-85.8^{\text {e }}$	$\left.\begin{array}{r}-87.3 \\ -102.6\end{array}\right\} \quad-94.95$	-76.95	$-81\} \quad-86$	$-47\} \quad-58$
$\left.{ }^{19}{ }^{19} \mathrm{~F}_{\text {eq }}\right\}$	av ${ }^{\text {a }}$ - 75	-102.6		-90 -86	-68 -
${ }^{31} \mathrm{P}$	-75.1	-101.5	-83.5	-122	-122
${ }^{17} \mathrm{O}$		114.9	132.9	130	128

${ }^{a}$ The following standards were used for the chemical shifts: ${ }^{19} \mathrm{~F}, \mathrm{CFCl}_{3} ;{ }^{31} \mathrm{P}, \mathrm{PO}_{4}{ }^{3-} ;{ }^{17} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} ;{ }^{33} \mathrm{~S}, \mathrm{CS}_{2} .{ }^{b}$ Reference 71. ${ }^{c}$ Reference 8. ${ }^{d}$ Reference 63. ${ }^{e}$ This work. ${ }^{f}$ An empirical adjustment of 18 ppm was applied to the calculated values to maximize their fit with the observed shifts.

Scheme 1

$2 \times-295.6=-591.2$	-376.9		-171.3
$2 \mathrm{POF}_{3}$	$\longrightarrow \mathrm{PF}_{5}$	+	$\mathrm{PO}_{2} \mathrm{~F}$
1	\|		1
$+2 \mathrm{~F}^{-} \mid 2 \times-48=-96$	+ $\mathrm{F}^{-} \mid-85$		+ $\mathrm{F}^{-} \mid-90$
\downarrow	\downarrow		\downarrow
$2 \mathrm{POF}_{4}{ }^{-}$-	$\longrightarrow \mathrm{PF}_{6}{ }^{-}$	+	$\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$
-687.2 $\Delta \mathrm{H}_{\mathrm{r}}=-36$	-461.9		-261.3

Table 12. Reaction Energies ${ }^{a}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ for the Dismutations of POF_{4}^{-}(6), SOF_{4} (7), and ClOF_{3} (10)

	reaction energy		
computational level	POF_{4}^{-}- 6$)$	SOF4 (7)	$\mathrm{ClOF}_{3}(10)$
BP/DZVP2	-26.4	-32.8	5.3
MP2/DZP	-31.4	-29.4	3.7
MP2/cc-VDZ	-41.5	-46.9	1.9
MP2/aug-cc-VTZ	-36.4	-45.2	1.7
CCSD(T)/cc-VDZ	-41.8	-47.1	2.5
experimental value	-36^{b}		3.8^{c}

[^15]the $\Delta H_{\mathrm{f}}{ }^{\circ}$ value of $-205 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{SO}_{2} \mathrm{~F}_{2}$ changes the $\Delta H_{\mathrm{f}}{ }^{\circ}$ estimate for SOF_{4} to $-216.2 \mathrm{kcal} \mathrm{mol}^{-1}$. Depending on the choices of the $\Delta H_{\mathrm{f}}{ }^{\circ}$ values for $\mathrm{SO}_{2} \mathrm{~F}_{2}$ and SOF_{4}, the dismutation energy of SOF_{4} ranges from -1.9 to $-64.3 \mathrm{kcal} \mathrm{mol}^{-1}$, with the $-1.9 \mathrm{kcal} \mathrm{mol}^{-1}$ value being based on the most popular JANAF $\mathrm{SO}_{2} \mathrm{~F}_{2}{ }^{16}$ and the experimental $\mathrm{SOF}_{4}{ }^{14}$ values.

In view of these uncertainties in the experimental values and the general experience that reaction energies can be calculated quite accurately by $a b$ initio methods due to the cancellation of systematic errors on both sides of the equations, the reaction energies were calculated for the dismutations of SOF_{4} and $\mathrm{POF}_{4}{ }^{-}$. As a further test for the accuracy of our calculations, we have also computed the dismutation energy for the closely related ClOF_{3} molecule (reaction 10).
As for SOF_{4} and POF_{4}^{-}, this system involves the dismutation of two pseudotrigonal bipyramids to a pseudotetrahedron and

[^16]
(10)
a pseudooctahedron and offers the advantage that the heats of formation of all three compounds are accurately known. ${ }^{78}$

The reaction energies for the dismutation reactions 6,7 , and 10 were calculated at different levels of theory, and the results are summarized in Table 12. Although the reaction energies differ somewhat with the level of theory, the following conclusions can be reached: (1) The agreement between the experimental values for $\mathrm{ClOF}_{3}\left(+3.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and POF_{4}^{-} $\left(-36 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ with the calculated ones $(+1.7$ and -36.4 , respectively, at the MP2/aug-cc-VTZ level) is excellent and demonstrates that the quality of the calculated values is comparable to good experimental data. (2) The dismutation reactions of POF_{4}^{-}and SOF_{4} are both exothermic and of comparable energy, with SOF_{4} being somewhat more exothermic than POF_{4}^{-}at each level of theory, except for MP2/DZP. Clearly, the previous literature data, ${ }^{6,16}$ which implied a difference of about $70 \mathrm{kcal} \mathrm{mol}^{-1}$, are badly in error, and the generally accepted values for the heats of formation of $\mathrm{SO}_{2} \mathrm{~F}_{2}{ }^{16}$ and $\mathrm{SOF}_{4}{ }^{14}$ and the dismutation energy of $\mathrm{POF}_{4}{ }^{-6}$ need revision. (3) The significant difference between the reaction energies of isoelectronic SOF_{4} and POF_{4}^{-}on one hand and ClOF_{3} on the other can be rationalized by the changes in the nature of the bonding during dismutation. In pseudo-trigonal-bipyramidal SOF_{4}, POF_{4}^{-}, and ClOF_{3}, the two axial fluorine bonds are weak, long, semi-ionic, three-center-four-electron bonds. ${ }^{76}$ In the $\mathrm{SO}_{2} \mathrm{~F}_{2}$, $\mathrm{PO}_{2} \mathrm{~F}_{2}^{-}, \mathrm{SF}_{6}$, and PF_{6}^{-}dismutation products, all fluorine bonds become strong, normal, mainly covalent bonds, which causes the dismutation reaction to be highly exothermic. For ClOF_{3}, however, a free valence electron pair on chlorine is present in the ClF_{5} dismutation product. This free pair seeks high s-character and induces the formation of two semi-ionic, three-center-four-electron bond pairs for the four equatorial fluorine ligands. ${ }^{79}$ Therefore, for the ClOF_{3} dismutation, the number of semi-ionic, three-center-four-electron bonds remains unchanged, and hence the reaction is essentially thermally neutral. The difference between molecules containing semi-ionic, three-center-four-electron bonds and others that contain either a different number or none can give rise to bad estimates for the
thermodynamic properties, if only the total number and not the types of fluorine bonds are considered.

The influence of the computational levels on the reaction energies is relatively minor due to the cancellation of errors on both sides of the equation. Nevertheless, the following trends were observed. The MP2/cc-VDZ calculations result in more negative values than those at the MP2/DZVP level. The difference between the $\operatorname{CCSD}(\mathrm{T})$ and MP2 results with the ccVDZ basis set is small. Improvement of the basis set leads to a decrease in the overall exothermicity, with the larger decrease found for (6), the POF_{4}^{-}reaction. The results with the larger basis sets also show that the SOF_{4} dismutation is somewhat more exothermic than that of $\mathrm{POF}_{4}{ }^{-}$.

Mechanism of the Dismutation Reaction of $\mathrm{POF}_{4}{ }^{-}$. In the previous section it was demonstrated that the dismutation reactions of SOF_{4} and POF_{4}^{-}are both highly exothermic and of similar magnitude. Consequently, the great difference in their dismutation behavior cannot be due to thermodynamics but must be ascribed to kinetic effects. In this section, therefore, the likely reaction mechanisms of these reactions will be scrutinized.

The low-temperature NMR studies (see above) provide an insight into the mechanism of the POF_{4}^{-}dismutation. With increasing temperature, the intensities of the POF_{4}^{-}and POF_{3} signals decrease, while those due to the $\left[\mathrm{OF}_{2} \mathrm{POPF}_{5}\right]^{-}$anion increase, indicating that $\mathrm{POF}_{4}{ }^{-}$reacts with POF_{3} to yield $\left[\mathrm{OF}_{2} \mathrm{POPF}_{5}\right]^{-}$. The most likely path for this reaction is shown in (11) and involves the formation of an intermediate oxygen

and fluorine bridged dimeric anion, which can rearrange to [$\left.\mathrm{OF}_{2} \mathrm{POPF}_{5}\right]^{-}$by allowing the bridging oxygen to form two single bonds and breaking one original $\mathrm{P}-\mathrm{F}$ bond of POF_{3}. On further warm up, the resulting $\left[\mathrm{OF}_{2} \mathrm{POPF}_{5}\right]^{-}$anion can readily lose its PF_{5} molecule to the more basic F^{-}ion present as $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}{ }^{+} \mathrm{F}^{-}$in these solutions, resulting in the formation of the final species, $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$.

This mechanism involves exclusively low activation energy steps (F^{-}ion transfer and donor-acceptor interactions) and thus explains the great ease of the POF_{4}^{-}dismutation even at the very low temperatures. Since the dismutation requires the presence of free POF_{3} for the formation of the crucial dimeric $\left[\mathrm{OF}_{2} \mathrm{POPF}_{5}\right]^{-}$anion, it is predicted that in the absence of free POF_{3}, a well-isolated POF_{4}^{-}anion will be a stable species that can be isolated at ambient temperature. Synthetic approaches would involve the uses of excess F^{-}and of low temperatures where all POF_{3} can be converted to POF_{4}^{-}before the dismutation sets in.

The second question to be addressed is why $\mathrm{POF}_{4}{ }^{-}$dismutates so readily and isoelectronic SOF_{4} does not. Application of mechanism 11 to the isoelectronic sulfur species would require an $\mathrm{SOF}_{3}{ }^{+}$cation and an SOF_{4} molecule for the generation of an intermediate $\left[\mathrm{OF}_{2} \mathrm{SOSF}_{5}\right]^{+}$dimeric cation that could either eliminate $\mathrm{SO}_{2} \mathrm{~F}_{2}$ with formation of an energetically highly unfavorable $\mathrm{SF}_{5}{ }^{+}$cation or undergo attack by an F^{-}anion to give SF_{6} and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ (reaction 12).

Contrary to the POF_{3} dismutation which is F^{-}catalyzed, the SOF_{4} dismutation would require very strong Lewis acids such as SbF_{5} or AsF_{5} as catalysts. Clearly, mechanism 12 would involve several energetically very unfavorable species, such as $\mathrm{SF}_{5}{ }^{+}$or polycations containing SOF_{4}, and, therefore, should exhibit high activation energy barriers.

Starting the dismutation of SOF_{4} with two SOF_{4} molecules is equally unattractive. The substitution of one doubly bonded oxygen ligand by two singly bonded fluorine ligands would require a dimeric intermediate with one oxygen and two fluorine bridges and one heptacoordinated sulfur atom (reaction 13).

Therefore, the SOF_{4} dismutation to $\mathrm{SO}_{2} \mathrm{~F}_{2}$ and SF_{6} is mechanistically unfavorable and is not observed under normal conditions.

Conclusion

The ephemeral $\mathrm{POF}_{4}{ }^{-}$anion has been prepared and identified for the first time. Whereas its geometry and spectroscopic properties mimic the isoelectronic SOF_{4} molecule, its chemical behavior and, in particular, its dismutation to $\mathrm{XO}_{2} \mathrm{~F}_{2}$ and XF_{6} type species are very different. The $\mathrm{POF}_{4}{ }^{-}$anion is thermally highly unstable and starts to dismutate even at -140 to -130 ${ }^{\circ} \mathrm{C}$ to $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$, whereas SOF_{4} is kinetically stable toward dismutation to $\mathrm{SO}_{2} \mathrm{~F}_{2}$ and SF_{6}. Extensive use of theoretical calculations was made to better understand the properties and reactions of the highly unstable $\mathrm{POF}_{4}{ }^{-}$anion. Of particular interest in this respect were its fluxionality, i.e., the equatorial-axial fluorine exchange, and its dismutation process.

Acknowledgment. This paper is dedicated to the memory of Dr. Charles B. Lindahl, a former Rocketdyne colleague, coworker, and friend. The authors thank Prof. G. A. Olah and Dr. S. L. Rodgers for their active support. The work at the Phillips Laboratory was financially supported by the Propulsion Directorate of the U. S. Air Force, that at USC by the National Science Foundation, that at McMaster University by the Natural Sciences and Engineering Research Council of Canada, and that at Pacific Northwest National Laboratory under the auspices of the Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC06-76RL01830 with Battelle Memorial Institute, which operates the Pacific Northwest Laboratory, a multiprogram national laboratory operated for the U.S. Department of Energy.

JA963421I

[^0]: (10) Oberhammer, H.; Boggs, J. E. J. Mol. Struct. 1979, 56, 107 and references cited therein.
 (11) Hargittai, I. J. Mol. Struct. 1979, 56, 301.
 (12) (a) Lustig, M.; Ruff, J. K. Inorg. Chem. 1967, 6, 2115. (b) Note Added in Proof: Prof. R. Schmutzler has brought a British Patent (1,104,244, Feb 21, 1968), which was issued to Barry Tittle, to our attention, in which KPOF_{4} and CsPOF_{4} were claimed as stable salts. This is an erroneous claim, as shown by our study.
 (13) Fernandez-Galan, R.; Manzano, B. R.; Otero, A.; Lanfranchi, M.; Pellinghelli, M. A. Inorg. Chem. 1994, 33, 2309.

[^1]: (14) Dittmer, G.; Niemann, U. Philips J. Res. 1982, 37, 1.
 (15) Herron, J. T. J. Phys. Chem. Ref. Data 1987, 16, 1.
 (16) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed.; U.S. GPO, Washington, DC, 1971; 1978 Supplement. J. Phys. Chem. Ref. Data 1978, 7, 793.
 (17) Chase, M. W., Jr.; Curnett, J. L.; Downey, J. R., Jr.; McDonald, R. A.; Syverud, A. N.; Valenzuela, E. A. J. Phys. Chem. Ref. Data 1982, 11, 695.
 (18) Reese, R. M.; Dibeler, V. H.; Franklin, J. L. J. Chem. Phys. 1958, 29, 880 .
 (19) Christe, K. O.; Wilson, W. W.; Bau, R.; Bunte, S. W. J. Am. Chem. Soc. 1992, 114, 3411.
 (20) Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. 1990, 112, 7619.
 (21) Christe, K. O.; Gnann, R.; Wagner, R. I.; Wilson, W. W. Eur. J. Solid State Inorg. Chem. 1996, 33, 865.
 (22) Kwasnik, W. In Handbook of Preparative Inorganic Chemistry, 2nd ed.; Brauer, G., Ed.; Academic Press: New York, 1963; Vol. 1, Section 4, pp 193-194.
 (23) Christe, K. O.; Dixon, D. A.; Mahjoub, A. R.; Mercier, H. P. A.; Sanders, J. C. P.; Seppelt, K.; Schrobilgen, G. J.; Wilson, W. W. J. Am. Chem. Soc. 1993, 115, 2696.
 (24) Winfield, J. M. J. Fluorine Chem. 1984, 25, 91.

[^2]: (25) GRADSCF is an ab initio program system designed and written by A. Komornicki at Polyatomics Research, Mountain View, CA. BMATRIX is an auxiliary program used for force constant analysis.
 (26) Dunning, T. H., Jr.; Hay, P. J. In Methods of Electronic Structure Theory; Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; Chapter 1.
 (27) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5369.
 (28) (a) Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Chem. Phys. Lett. 1977 45, 595. (b) McIver, J. W., Jr.; Komornicki, A. Chem. Phys. Lett. 1971, 10, 202. (c) Pulay, P. In Applications of Electronic Structure Theory; Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; p 153. (d) Breidung, J.; Thiel, W.; Komornicki, A. Chem. Phys. Lett. 1988, 153, 76.
 (29) (a) King, H. F.; Komornicki, A. J. Chem. Phys. 1986, 84, 5465. (b) King, H. F.; Komornicki, A. In Geometrical Derivatives of Energy Surfaces and Molecular Properties; Jorgenson, P., Simons, J., Eds.; NATO ASI Series C. Vol. 166; D. Reidel: Dordrecht, 1986; p 207.

[^3]: (35) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497. London, F. J. Phys, Radium (Paris) 1937, 8, 397. Ditchfield, R. Mol. Phys. 1974, 27, 789. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.
 (36) (a) Andzelm, J.; Wimmer, E.; Salahub, D. R. In The Challenge of d and f Electrons: Theory and Computation; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series, No. 394; American Chemical Society: Washington, DC, 1989; p 228. (b) Andzelm, J. In Density Functional Theory in Chemistry; Labanowski, J., Andzelm, J., Eds.; Springer-Verlag: New York, 1991; p 155. (c) Andzelm, J. W.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280. DGauss is a density functional program available from Oxford Molecular.
 (37) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560.
 (38) Vosko, S. J.; Wilk, L.; Nusair, W. Can J. Phys. 1980, 58, 1200.
 (39) Komornicki, A.; Fitzgerald, G. J. Phys. Chem. 1993, 98, 1398 and references therein.
 (40) Arduengo, A. J., III; Dixon, D. A.; Kumashiro, K. K.; Lee, C.; Power, W. P.; Zilm, K. W. J. Am. Chem. Soc. 1994, 116, 6361.
 (41) (a) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193. (b) Schindler, M.; Kutzelnigg, W. J. Chem. Phys. 1982, 76, 1919.
 (42) Hansen, A. E.; Bouman, T. D. J. Chem. Phys. 1985, 82, 5035.

[^4]: ${ }^{a}$ For a definition of the individual atoms see structures \mathbf{A} and $\mathbf{B} .{ }^{b} \mathrm{~d}=$ doublet, $\mathrm{tr}=$ triplet, quar $=$ quartet, quin $=$ quintet, $\mathrm{m}=$ unresolved. ${ }^{c}$ The similarity of ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{b}}\right)$ and ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)$ causes the expected doublet of quintets to have the appearance of a sextet. ${ }^{d}$ Only one of the two quintets was observed; the second one was obscured by the solvent peak; the listed δ value was obtained from the position of the observed quintet and the known ${ }^{1} J\left({ }^{31} \mathrm{P}_{\mathrm{B}}-{ }^{19} \mathrm{~F}_{\mathrm{c}}\right)$ value. ${ }^{e}$ Probably obscured by the CHF_{3} solvent peak.

[^5]: (43) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
 (44) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
 (45) (a) Bartlett, R. J. J. Phys. Chem. 1989, 93, 1697. (b) Kucharski, S. A.; Bartlett, R. J. Adv. Quantum Chem. 1986, 18, 281. (c) Bartlett, R. J.; Stanton, J. F. In Reviews of Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH Publishers: New York, 1995; Vol. V, Chapter 2, p 65.
 (46) MOLPRO is a package of $a b$ initio programs written by Werner, H.-J. and Knowles, P. J. with contributions from Almlof, J., Amos, R. D., Deegan, M. J. O., Elbert, S. T., Hampel, C., Meyer, W., Peterson, K. A., Pitzer, R. M., Stone, A. J., Taylor, P. R., and Lindh, R.
 (47) Christe, K. O.; Schack, C. J.; Curtis, E. C. Spectrochim. Acta, Part A 1977, 33A, 323.

[^6]: (48) Il'in, E. G.; Meisel, M.; Shcherbakova, M. N.; Wolf, G. U.; Buslaev, Yu. A. Dokl. Akad. Nauk SSSR 1982, 266, 878.
 (49) Reddy, G. S.; Schmutzler, R. Z. Naturforsch. Teil B 1970, 25b, 1199.
 (50) Moedritzer, K.; Maier, L.; Groenweghe, L. C. D. J. Chem. Eng. Data 1962, 7, 307.
 (51) Gutowsky, H. S.; McCall, D. W.; Slichter, C. P. J. Chem. Phys. 1953, 21, 279.

[^7]: (52) Muetterties, E. L.; Phillips, W. D. J. Am. Chem. Soc. 1957, 79, 322.
 (53) Jameson, C. J. In Multinuclear NMR; Mason, J., Ed.; Plenum

[^8]: (65) Windus, T. M.; Gordon, M. S.; Burggraf, L. W.; Davis, L. P. J. Am. Chem. Soc. 1991, 113, 4356.
 (66) Steigel, A. In NMR—Basic Principles and Progress; Dynamic NMR Spectroscopy; Diel, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: New York, 1978; Vol. 15, p 1 and references therein.
 (67) Eisenhut, M.; Mitchell, H. L.; Traficante, D. D.; Kaufman, R. J.; Deutch, J. M.; Whitesides, G. M. J. Am. Chem. Soc. 1974, 96, 5385.
 (68) Minyaev, R. M. Chem. Phys. Lett, 1992, 196, 203.
 (69) Windus, T. M.; Gordon, M. S. Theor. Chim. Acta 1992, 83, 21.
 (70) Gombler, W. Diploma Thesis, Saarbrücken, FRG, 1974. Gombler, W. Personal communication.
 (71) Spring, C. A.; True, N. S. J. Am. Chem. Soc. 1983, 105, 7231.
 (72) Sawodny, W.; Birk, K.; Fogarasi, G.; Christe, K. O. Z. Naturforsch., B 1980, 35B, 1137 and references therein.

[^9]: (73) (a) Gillespie, R. J.; Robinson, A. E. Angew. Chem., Int. Ed. Engl. 1996, 35, 495. (b) Gillespie, R. J.; Bytheway, I.; DeWitte, R. S.; Bader, R. F. W. Inorg. Chem. 1994, 33, 2115.

[^10]: (74) Siebert, H. Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Anorganische und Allgemeine Chemie in Einzeldarstellungen VII; Springer-Verlag: Berlin, Heidelberg, New York, 1966.
 (75) Small, C. E.; Smith, J. G. J. Mol. Spectrosc. 1978, 73, 215.
 (76) Pimentel, G. C. J. Chem. Phys. 1951, 19, 446. Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321. Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112.

[^11]: ${ }^{a}$ The following symmetry coordinates were used: $\mathrm{S}_{1}, v \mathrm{X}=\mathrm{O} ; \mathrm{S}_{2}, v$ sym $\mathrm{XF}_{2 \mathrm{eq}} ; \mathrm{S}_{3}, v$ sym $\mathrm{XF}_{2 \mathrm{ax}} ; \mathrm{S}_{4}, \delta$ sym $\mathrm{XF}_{2 \mathrm{eq}} ; \mathrm{S}_{5}, \delta$ sym $\mathrm{XF}_{2 \mathrm{ax}} ; \mathrm{S}_{6}, \tau ; \mathrm{S}_{7}$, v as $\mathrm{XF}_{2 \mathrm{ax}} ; \mathrm{S}_{8}, \delta$ wag $\mathrm{XF}_{2 \mathrm{eq}} ; \mathrm{S}_{9}, \delta$ wag $\mathrm{X}=\mathrm{O} ; \mathrm{S}_{10}, v$ as $\mathrm{XF}_{2 \mathrm{eq}} ; \mathrm{S}_{11}, \delta \mathrm{XF}_{2 \mathrm{ax}}$ out of $\mathrm{OXF}_{2 \mathrm{ax}}$ plane; S_{12}, δ rock $\mathrm{XF}_{2 \mathrm{eq}}$.

[^12]: ${ }^{a}$ Matrix isolation data from ref 47 with the revised assignments from Table 3. ${ }^{b}$ The matrix IR band for $v_{1}\left(\mathrm{~A}_{1}\right)$ at $1376 \mathrm{~cm}^{-1}$ is complicated by Fermi resonance with several combination bands, adding uncertainty to the reported isotopic shift. ${ }^{c}$ These shifts were estimated from the shoulders shown in Figure 3J of ref 47.

[^13]: ${ }^{a}$ Reference 59. ${ }^{b}$ This work. ${ }^{c}$ Reference 8. ${ }^{d}$ Reference 74. ${ }^{e}$ Reference 75. ${ }^{f}$ Reference 72.

[^14]: (77) Ruh, R. P.; Davis, R. A.; Allswede, K. A. U.S. Patent 3,092,458 (1963).

[^15]: ${ }^{a}$ Electronic energy difference. HP/DZP zero-point corrections are $+0.7 \mathrm{kcal} \mathrm{mol}^{-1}$ for (6), $+0.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for (7), and $+0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for (10). ${ }^{b}$ See text. ${ }^{c}$ Data from ref 78.

[^16]: (78) Barberi, P. B. I. S. T. Commissariat a l'Energie Atomique (France) 1976, 7, 511.
 (79) Christe, K. O. XXIVth Int. Congr. Pure Appl. Chem. 1974, IV, 115.

